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INTRODUCTION

Two Key Parameters of Particle Colliders
• Centre-of-Mass Energy: Energy available

to produce new particles or probe smaller
scales

• Luminosity: determines the rate at which
particles collide

Why Measure Luminosity Precisely?
• Often leading source of uncertainty in

cross-section measurements
• Crucial for estimating backgrounds and

sensitivity in Beyond Standard Model
searches

ATLAS Online Luminosity Measurements
• LHC Machine optimisation/levelling
• Setting trigger thresholds

https://arxiv.org/pdf/2404.10674

Dataset Stat (%) Syst (%) Lumi (%)

2015–2016, 36.1 fb−1 (prelim. lumi) 0.4 1.4 1.9
2015–2018, 140 fb−1 (final lumi) 0.1 1.6 0.9

★ Reduced luminosity uncertainty due to
improved luminosity calibration transfer,
long-term stability analyses, and refined
van der Meer procedures
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LUMINOSITY BASICS

Event Rate: A Foundational Formula

▶ Luminosity is essentially a measure of the
number of proton collisions produced by
the LHC at a given interaction point (IP)

▶ Determined by the LHC beam parameters

µvis — measured visible interaction rate
from the luminometer
σvis — visible cross section (calibration
constant linking µvis to absolute luminosity)

Total Integrated Luminosity in Run 3 (pp data only)

Instantaneous Luminosity L [cm−2 s−1]
• Number of pp collisions per second

Integrated Luminosity Lint =
∫
Ldt [cm−2]

≡ [fb−1]
• Number of pp collisions in a data

sample
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ATLAS LUMINOSITY DETECTORS AND ALGORITHMS
▶ Bunch-by-bunch luminosity:

LUCID — LUminosity Cherenkov Integrating Detector
• ATLAS’s primary luminometer
• µvis from the average number of hits per bunch

crossing
µvis = − ln (1 − Phit)

Inner Detector
• µvis is proportional to number of reconstructed tracks

µvis =< Ntrk >

▶ Bunch-integrated luminosity:

µvis =< IPMT >

LAr calorimeters: EMEC and FCAL
• Luminosity assumed proportional to the currents

drawn across LAr gaps by HV power supplies
Tile Calorimeter
• Luminosity assumed proportional to PMT currents
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ATLAS LUMINOSITY MEASUREMENTS IN A NUTSHELL

Basic idea:
▶ Measure visible interaction rate in a luminosity-sensitive detector

Lb = fLHC
µvis

σvis
, µvis = ϵµ, σvis = ϵσinel

ϵ = Efficiency of algorithm, σinel ≈ 80 mb (13–14 TeV), fLHC ≈ 11.245 kHz

Step 1: vdM Calibration

▶ L derived from beam
parameters

▶ Used to determine
σvis from the
measured detector
counts

▶ Well-controlled
conditions:
µ ≈ 0.5, few isolated
bunches

Step 2: Calibration
Transfer (CT)

▶ Transfer LUCID
calibration from vdM
to physics regime
with Track Counting
measurements

▶ Cross-check with
Tile Calorimeter
measurements to
assess CT
uncertainties

Step 3: Long-Term Sta-
bility

▶ Verify stability of
luminosity calibration
from run to run over
entire running period

▶ Compare
run-integrated
luminosities from
LUCID, Tile, EMEC,
FCAL
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LONG-TERM STABILITY STUDY IN RUN 2

Run-integrated luminosities from LUCID were compared with independent measurements
from EMEC, FCAL, and Tile D6 cells
• The calorimeter algorithm showing the largest difference sets the long-term stability

uncertainty

Results from the Run 2 analysis
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ATLAS TILE CALORIMETER

Photomultiplier

Wave-length shifting fiber

Scintillator Steel

Source

tubes

Central hadronic calorimeter of ATLAS
Reconstructs energy deposits from hadrons, jets and
taus, missing transverse energy
Provides input for L1Calo
Mechanical Structure
• 3 tile ‘cylinders’, a Long Barrel and two Extended

Barrels, segmented into 64 wedge shaped modules,
ϕ segmentation

• Made of alternating layers of plastic scintillators
(active material) and low carbon steel (absorber)

• Divided into three segments along the beam axis, η
segmentation

Readout Architecture
• Scintillation light is transmitted by wavelength shifting

fibres to photomultiplier tubes (PMTs)
• Most cells are readout by 2 PMTs; E-cells are

readout by a single PMT
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TILE CALORIMETER AS A LUMINOMETER

The TileCal cells’ geometry is defined by η
segmentation (∆η = 0.2 for the D layer) and ϕ
segmentation (∆ϕ = 0.1 rad)
Luminosity proportional to PMT currents
• Integrator-based readout every 10 ms for

luminosity
• PMT gain change during the year corrected with

laser calibration runs
Cell position affects both sensitivity and radiation
dose
Different cells used for luminosity measurement
• D-cells used for long-term stability studies

[subject of this talk]
• A13, A14 and E3 and E4 (gap scintillators) used

for Calibration-transfer uncertainity studies
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FROM PMT CURRENTS TO LUMINOSITY (1)

The collision induced PMT current is given by:

IPMT =
ADCs − pedestal

Gain

• The pedestal accounts for the electronic noise,
beam-induced effects, and non-collision background

• Gain is the amplification factor for each PMT
The current is proportional to the number of particles
traversing a cell
Not all PMT currents are used
• Bad PMTs: power-cycled mid-run, saturated, burnt

cards, noisy channels
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FROM PMT CURRENTS TO LUMINOSITY (2)

Cross-calibrate Tile currents to Track
luminosity in an ‘anchor run’
Anchoring constants calculated per PMT
per module

αmodule =
LTRACKs

< IPMT >module

Anchoring in the range LB 700 - 1200

Multiply anchoring constants by Tile
currents to compute luminosity per run

LTile = αmodule× < IPMT >module

• Module luminosity: average of left
and right PMT currents

• Cell luminosity: average over all
good modules
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LONG-TERM STABILITY STUDY USING 2023 DATA (1)

▶ Runs from the standard GRL are to be used.
▶ The Runs are required to have at least 100 LBs during Stable Beams.
▶ All runs to be anchored to Run 455924

▶ Monitor possible drifts in LUCID or
track-counting over the year

▶ Study stability via comparisons between
calorimeters and LUCID

▶ EMEC, FCal, and Tile D6-cell values are
averaged over A-side and C-side

▶ Anchoring region defined by 10 fills
surrounding the vdM fill
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https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/GoodRunListsForAnalysisRun3


LONG-TERM STABILITY STUDY USING 2023 DATA (2)

Traditional stability plots (see previous slide) overweight runs with
small Lint

• Physics analyses care about integrated deviation, not per-run
scatter

Long-term stability is evaluated via luminosity-weighted differences
between calorimeters and LUCID
Final stability uncertainty taken as the largest mean offset among
EMEC, FCal, and Tile D6 vs. LUCID

Long-term stability
uncertainty: 0.10%
(FCal)
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CONCLUSIONS

Accurate luminosity measurements are crucial in the ATLAS physics program
• Often one of the leading systematic uncertainties in SM measurements
• Needed for evaluation of background levels and search sensitivity

It is vital for operations
• LHC machine optimisation / levelling
• Setting trigger thresholds / prescales

TileCal plays a key role in ATLAS luminosity calibration
Long-term stability checks ensure reliable luminosity over time
Long-Term Stability in 2023
• Luminosity-weighted comparisons of LUCID with EMEC, FCal, and Tile D6-cell reveal

excellent consistency
• Final long-term stability uncertainty: 0.10% set by FCal
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