Analysis of Long-Term Stability Uncertainty in Luminosity Measurements Using the Tile Calorimeter of the ATLAS Detector for Run 3 Proton-Proton Collisions at $\sqrt{s}=$ 13.6 TeV in 2023

Phuti Rapheeha^{1,2,3} and Bruce Mellado^{1,2}

University of the Witwatersrand, iThemba LABS, Tshwane University of Technology

The 69th Annual Conference of the South African Institude of Physics University of the Witwatersrand, Johannesburg July 7-11, 2025

OVERVIEW

1	Intro	duction)
	1.1	Why Measure Luminosity Precisely?)
	1.2	ATLAS Luminosity Detectors and Algorithms	ļ
	1.3	Long-Term Stability Study in Run 2	,
2	ATLA	S Tile Calorimeter	•
3	Tile C	Calorimeter as a Luminometer	}
4	Long	-Term Stability Study using 2023 Data	
5	Conc	lusions	

INTRODUCTION

Two Key Parameters of Particle Colliders

- Centre-of-Mass Energy: Energy available to produce new particles or probe smaller scales
- Luminosity: determines the rate at which particles collide

Why Measure Luminosity Precisely?

- Often leading source of uncertainty in cross-section measurements
- Crucial for estimating backgrounds and sensitivity in Beyond Standard Model searches

ATLAS Online Luminosity Measurements

- LHC Machine optimisation/levelling
- Setting trigger thresholds

https://arxiv.org/pdf/2404.10674

Dataset	Stat (%)	Syst (%)	Lumi (%)
2015–2016, 36.1 fb ⁻¹ (prelim. lumi)	0.4	1.4	1.9
2015–2018, 140 fb ⁻¹ (final lumi)	0.1	1.6	0.9

★ Reduced luminosity uncertainty due to improved luminosity calibration transfer, long-term stability analyses, and refined van der Meer procedures

LUMINOSITY BASICS

Event Rate: A Foundational Formula

$$R_{pp
ightarrow X} = \mathcal{L} \cdot rac{\sigma_{pp
ightarrow X}}{\sigma_{pp
ightarrow X}}$$
 Rate of interesting process

- ► Luminosity is essentially a measure of the number of proton collisions produced by the LHC at a given interaction point (IP)
- Determined by the LHC beam parameters

$$\mathcal{L}=f_{LHC}rac{n_1n_2}{2\pi\Sigma_{x}\Sigma_{y}} \longleftrightarrow \mathcal{L}=f_{LHC}rac{\mu_{vis}}{\sigma_{vis}} egin{array}{c} n_{1,2} : ext{Bunch Intensity} \ \Sigma_{1,2} : ext{Beam Overlap integral} \ \mu_{vis} : ext{Visible Interactions/bunc} \ \sigma_{vis} : ext{Visible cross-section} \ f_{LHC} : ext{LHC rev. Frequency} \end{array}$$

 $\mu_{\rm vis}$ — measured visible interaction rate from the luminometer

 $\sigma_{\rm vis}$ — visible cross section (calibration constant linking $\mu_{\rm vis}$ to absolute luminosity)

Total Integrated Luminosity in Run 3 (pp data only)

Instantaneous Luminosity \mathcal{L} [cm⁻² s⁻¹]

- Number of pp collisions per second Integrated Luminosity $\mathcal{L}_{\mathrm{int}} = \int \mathcal{L} dt$ [cm $^{-2}$] \equiv [fb $^{-1}$]
 - Number of pp collisions in a data sample

ATLAS LUMINOSITY DETECTORS AND ALGORITHMS

► Bunch-by-bunch luminosity:

LUCID — LUminosity Cherenkov Integrating Detector

- ATLAS's primary luminometer
- μ_{vis} from the average number of hits per bunch crossing

$$\mu_{\mathrm{vis}} = -\ln\left(\mathbf{1} - P_{\mathrm{hit}}\right)$$

Inner Detector

ullet $\mu_{
m vis}$ is proportional to number of reconstructed tracks

$$\mu_{
m vis} = < N_{
m trk} >$$

Bunch-integrated luminosity:

$$\mu_{\rm vis} = \langle I_{PMT} \rangle$$

LAr calorimeters: EMEC and FCAL

 Luminosity assumed proportional to the currents drawn across LAr gaps by HV power supplies

Tile Calorimeter

Luminosity assumed proportional to PMT currents

ATLAS LUMINOSITY MEASUREMENTS IN A NUTSHELL

Basic idea:

▶ Measure visible interaction rate in a luminosity-sensitive detector

$$\mathcal{L}_b = f_{\mathrm{LHC}} \frac{\mu_{\mathrm{vis}}}{\sigma_{\mathrm{vis}}}, \; \mu_{\mathrm{vis}} = \epsilon \mu, \; \sigma_{\mathrm{vis}} = \epsilon \sigma_{\mathrm{inel}}$$

 ϵ = Efficiency of algorithm, $\sigma_{\rm inel} \approx$ 80 mb (13–14 TeV), $f_{\rm LHC} \approx$ 11.245 kHz

Step 1: vdM Calibration

- L derived from beam parameters
- Used to determine $\sigma_{\rm vis}$ from the measured detector counts
- Well-controlled conditions: $\mu \approx 0.5$, few isolated bunches

Step 2: Calibration Transfer (CT)

- Transfer LUCID calibration from vdM to physics regime with Track Counting measurements
- Cross-check with Tile Calorimeter measurements to assess CT uncertainties

Step 3: Long-Term Stability

- Verify stability of luminosity calibration from run to run over entire running period
- Compare run-integrated luminosities from LUCID, Tile, EMEC, FCAL

LONG-TERM STABILITY STUDY IN RUN 2

Run-integrated luminosities from LUCID were compared with independent measurements from EMEC, FCAL, and Tile D6 cells

 The calorimeter algorithm showing the largest difference sets the long-term stability uncertainty

Results from the Run 2 analysis

Data sample	2015	2016	2017	2018	Comb.
Integrated luminosity (fb ⁻¹)	3.24	33.42	44.63	58.80	140.10
Total uncertainty (fb ⁻¹)	0.04	0.30	0.50	0.64	1.17
Uncertainty contributions (%):					
Statistical uncertainty	0.07	0.02	0.02	0.03	0.01
Fit model*	0.14	0.08	0.09	0.17	0.12
Background subtraction*	0.06	0.11	0.19	0.11	0.13
FBCT bunch-by-bunch fractions*	0.07	0.09	0.07	0.07	0.07
Ghost-charge and satellite bunches*	0.04	0.04	0.02	0.09	0.05
DCCT calibration*	0.20	0.20	0.20	0.20	0.20
Orbit-drift correction	0.05	0.02	0.02	0.01	0.01
Beam position jitter	0.20	0.22	0.20	0.23	0.13
Non-factorisation effects*	0.60	0.30	0.10	0.30	0.24
Beam-beam effects*	0.27	0.25	0.26	0.26	0.26
Emittance growth correction*	0.04	0.02	0.09	0.02	0.04
Length scale calibration	0.03	0.06	0.04	0.04	0.03
Inner detector length scale*	0.12	0.12	0.12	0.12	0.12
Magnetic non-linearity	0.37	0.07	0.34	0.60	0.27
Bunch-by-bunch σ_{vis} consistency	0.44	0.28	0.19	0.00	0.09
Scan-to-scan reproducibility	0.09	0.18	0.71	0.30	0.26
Reference specific luminosity	0.13	0.29	0.30	0.31	0.18
Subtotal vdM calibration	0.96	0.70	0.99	0.93	0.65
Calibration transfer*	0.50	0.50	0.50	0.50	0.50
Calibration anchoring	0.22	0.18	0.14	0.26	0.13
Long-term stability	0.23	0.12	0.16	0.12	0.08
Total uncertainty (%)	1.13	0.89	1.13	1.09	0.83

2016 2017 2018 Comb

ATLAS TILE CALORIMETER

Central hadronic calorimeter of ATLAS

Reconstructs energy deposits from hadrons, jets and taus, missing transverse energy

Provides input for L1Calo

Mechanical Structure

- 3 tile 'cylinders', a Long Barrel and two Extended Barrels, segmented into 64 wedge shaped modules, φ segmentation
- Made of alternating layers of plastic scintillators (active material) and low carbon steel (absorber)
- Divided into three segments along the beam axis, η segmentation

Readout Architecture

- Scintillation light is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs)
- Most cells are readout by 2 PMTs; E-cells are readout by a single PMT

TILE CALORIMETER AS A LUMINOMETER

The TileCal cells' geometry is defined by η segmentation ($\Delta \eta =$ 0.2 for the D layer) and ϕ segmentation ($\Delta \phi =$ 0.1 rad)

Luminosity proportional to PMT currents

- Integrator-based readout every 10 ms for luminosity
- PMT gain change during the year corrected with laser calibration runs

Cell position affects both sensitivity and radiation dose

Different cells used for luminosity measurement

- D-cells used for long-term stability studies [subject of this talk]
- A13, A14 and E3 and E4 (gap scintillators) used for Calibration-transfer uncertainity studies

FROM PMT CURRENTS TO LUMINOSITY (1)

The collision induced PMT current is given by:

$$I_{\mathrm{PMT}} = \frac{\mathrm{ADCs-pedestal}}{\mathrm{Gain}}$$

- The pedestal accounts for the electronic noise, beam-induced effects, and non-collision background
- Gain is the amplification factor for each PMT

The current is proportional to the number of particles traversing a cell

Not all PMT currents are used

 Bad PMTs: power-cycled mid-run, saturated, burnt cards, noisy channels

FROM PMT CURRENTS TO LUMINOSITY (2)

Cross-calibrate Tile currents to Track luminosity in an 'anchor run'
Anchoring constants calculated per PMT per module

$$lpha_{ extit{module}} = rac{\mathcal{L}_{ extit{TRACKs}}}{< extit{I}_{ ext{PMT}} >_{ extit{module}}}$$

Anchoring in the range LB 700 - 1200

Multiply anchoring constants by Tile currents to compute luminosity per run

$$\mathcal{L}_{Tile} = \alpha_{\text{module}} \times \langle I_{\text{PMT}} \rangle_{\text{module}}$$

- Module luminosity: average of left and right PMT currents
- Cell luminosity: average over all good modules

LONG-TERM STABILITY STUDY USING 2023 DATA (1)

- Runs from the standard GRL are to be used.
- ▶ The Runs are required to have at least 100 LBs during Stable Beams.
- All runs to be anchored to Run 455924

- Monitor possible drifts in LUCID or track-counting over the year
- Study stability via comparisons between calorimeters and LUCID
- ► EMEC, FCal, and Tile D6-cell values are averaged over A-side and C-side
- Anchoring region defined by 10 fills surrounding the vdM fill

LONG-TERM STABILITY STUDY USING 2023 DATA (2)

Traditional stability plots (see previous slide) overweight runs with small $\mathcal{L}_{\mathrm{int}}$

Physics analyses care about integrated deviation, not per-run scatter

Long-term stability is evaluated via luminosity-weighted differences between calorimeters and LUCID

Final stability uncertainty taken as the largest mean offset among EMEC, FCal, and Tile D6 vs. LUCID

Source	Relative Uncertainty	Total	
vdM statistical uncertainty	< 0.01		
Scan-to-scan reproducibility	0.35%		
Bunch-to-bunch σ_{vis} consistency	0.36%		
Fit model	0.15%		
Background subtraction	0.13%		
Reference specific luminosity	0.30%		
Orbit drift correction	0.44%		
	0.34%		
μ dependence Beam-beam effects			
Demin centre con	0.32%		
Beam position jitter	< 0.01%		
Emittance variations	0.06%		
Factorised vdM analysis subtotal		0.93%	
Non-factorisation	1.39%		
Length scale calibration (stat)	0.02%		
Absolute inner detector length scale	0.12%		
Magnetic non-linearity	0.28%		
Scan subtotal		1.70%	
DCCT calibration	0.20%		
Bunch charge product	< 0.01%		
Ghost and satellite charges	0.04%		
vdM total		1.71%	
Calibration transfer	1.1%		
Calibration anchoring	0.16%		
Long-term stability	0.1%		
Luminosity total		2.04%	

Long-term stability uncertainty: 0.10% (FCal)

Conclusions

Accurate luminosity measurements are crucial in the ATLAS physics program

- Often one of the leading systematic uncertainties in SM measurements
- Needed for evaluation of background levels and search sensitivity

It is vital for operations

- LHC machine optimisation / levelling
- Setting trigger thresholds / prescales

TileCal plays a key role in ATLAS luminosity calibration

Long-term stability checks ensure reliable luminosity over time

Long-Term Stability in 2023

- Luminosity-weighted comparisons of LUCID with EMEC, FCal, and Tile D6-cell reveal excellent consistency
- Final long-term stability uncertainty: 0.10% set by FCal

9. $G''=\sqrt{TT-\gamma\gamma}t_1t_1$ SynLSelcctor Alg $\varepsilon_{\mu} \sum LL$ $R_{\rho\rho} \rightarrow X = L$ $au \geq 4$ $\mathcal{E} = \mu_{\mu} T t$ $E_{\mu} = \mu_{\mu,+L}$ LUID Εμμμ-γμ