

Particle Flow Algorithm (PFA) for forward region jet reconstruction with the ATLAS ITk detector setup at the HL-LHC

Lepota Thabo, Rachid Mazini, Mukesh Kumar 8th July 2025

University of the Witwatersrand

Outline

- Motivation
- Particle flow algorithm
- Forward region strategy
- Analysis Framework
- Results
- ☐ Summary and outlook

- ATLAS Phase II upgrades (Inner tracker (Itk) + high granularity timing detector (HGTD)) extend tracking to $|\eta| \approx 4$.
- Forward region suffers from coarse granularity and extreme pile-up at High Luminosity Large Hadron Collider (HL-LHC) (μ ≈ 200).
- Particle Flow Algorithm (PFA) uses track information to subtract charged energy from calorimeters.
- ☐ HGTD adds timing precision (~30 ps) to suppress pile-up in the forward region.
- Forward PFA is critical to unlock full physics potential of HL-LHC.

Particle Flow Algorithm (PFA)

Why it matters?

- ITk extends tracking to $|\eta| \le 4 \rightarrow$ enabling PFA in forward regions for the first time.
- □ HGTD adds precise timing → improves track-cluster matching under pile-up (μ ≈ 200).
- ☐ Cluster align with forward calorimeter geometry → make energy subtraction feasible despite coarse granularity.
- □ Together, these upgrades unlock forward-region PFA → critical for robust jet and MET reconstruction at HL-LHC.

Purpose:

Enhance event reconstruction and improve energy resolution for hadronic objects by combining tracker and calorimeter information.

Key Features:

- Track—Cluster Integration: Merges inner detector and calorimeter information.
- E/p Matching: Subtracts charged track energy from calorimeter to prevent double-counting.
- Shower Splitting Correction: Recovers energy from fragmented clusters.

Forward region strategy: Clusters (TopoClusters & Topotowers)

Feature	Topocluster	Topotowers
Formation	3D topological clustering (cell significance, spatial connections)	Fixed-size η-φ towers (predefined grids)
Granularity	Dynamic, optimized for isolated showers	Static, coarser in forward regions
Noise Suppression	High (cell-level thresholds)	Moderate (tower-level averaging)
Use Case	Precision tracking in central η (<2)	Robustness in high-η, high-pileup regions

- Forward calorimeters have coarser granularity → topotower better match geometry.
- Reduced computational complexity for HL-LHC pile-up conditions (avg. μ = 200).
- ☐ Simplified energy subtraction in Particle Flow Algorithm (PFA).

Analysis Framework

E/p Calibration Methodology

Ш	Key Definitions		
	□ E/p Ratio:		
	\Box E = Calorimeter energy deposit in $\Delta R < 0.2$ cone around track.		
	\Box p = Track momentum (inner detector).		
	\Box $\langle E/p \rangle$ = Mean ratio, binned by E_{track} , η , LHED (Layer of Highest Energy Deposit).		
	☐ Fitting Strategy		
	☐ Gaussian Fit to E/p distributions in each bin:		
	Range: Mean±RMS.		
	☐ Validation:		
	☐ If Hist mean-Gauss mean >0.1 \rightarrow Use histogram mode (if mode > 0.1) or mean (if mode < 0.1).		
	☐ Fit Quality: χ²/NDF < 2.0 (central) / < 3.0 (forward)		
	Energy Density Profiling (For shower subtraction)		
	Per ring $(\Delta \eta \times \Delta \phi = 0.05 \times 0.05)$:		
	$\langle E_{density} \rangle = \frac{\sum E_{cell}}{ring Area} \rangle$		
	☐ Priority: Subtract highest-density cells first		

Binning Scheme for E/p Studies

Layer	Description
EMB	Electro-Magnetic Barrel calorimeter
EME	Electro-Magnetic Endcap calorimeter
Tile	Tile calorimeter
FCal	Forward calorimeter

Calorimeter Layers

Variable	Bin edges
η_{track}	0; 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0
E _{track} [GeV]	0; 2; 5; 15; 25; 100
LHED	EMB1; EMB2; EMB3; EME1; EME2; EME3; HEC; Tile; FCal

Binning Variables

Forward Region: Coarse η bins for $|\eta| > 2.5$ due to calorimeter granularity. **Low Energy**: Focused bins below 5 GeV (critical for pile-up suppression).

Central region results: Mean of E/p distribution (LHED=EMB1, η =[0-1.5])

- For all samples, the mean E/p value generally increases with increasing transverse momentum (E_{TRACK})
 In the lower momentum bins, the mean E/p values are significantly below 1 for all samples.
- As the transverse momentum increases, the mean E/p values for most samples approach a plateau, generally between 0.6 and 0.7, due to energy loss in calorimeter material

Central region results: Sigma E/p distribution (LHED=EMB1, η =[0-1.5])

- For most samples, the E/p resolution ($\sigma(E/p)$) generally improves (decreases) as the transverse momentum (E_{track}) increases.
- In the lower momentum bins, the resolution tends to be worse (higher $\sigma(E/p)$) and shows more variation between different samples.
- At higher transverse momenta, the resolution generally plateaus or continues to improve slowly.

Central region results: Fitting results (LHED=EMB1, η =[0-0.5])

Central region results: Cell Ordering

Implementation Roadmap in the Forward region

Forward region preliminary results: E/p distribution forward region

E/p distribution Forward region preliminary results

- □ E/p plots are still being validated to ensure the topotowers are implemented correctly
- ☐ FCal indicates there are entries with energies ranging from 5-100 GeV

Summary and outlook

Extended Particle Flow Algorithm (PFA) to forward region using Topotowers, leveraging ITk coverage ($ \eta \le 4 $) at the HL-LHC.
Central region validation shows expected E/p trends: increasing mean, improving resolution with transverse momentum p_T
Forward region integration: ☐ Phase 1 & 2 complete (Topotower input + PFA adaptation). ☐ Phase 3 validation in progress (Z→ee, jets).
Workflow established: E/p binning, LHED-based subtraction, and cell/tower ordering.
Next Steps: Finalize E/p validation and tower subtraction tuning. Cross-check physics performance, document for ATLAS integration. Explore ML-based or hybrid tower/cluster methods.
Impact: Enables robust jet/MET reconstruction in forward region under extreme pile-up, unlocking full HL-LHC potential.

Kea
Leboha!
Pula, nala!

BACK UPS

ΔR

		a distance metric in η – ϕ space (pseudorapidity vs. azimuthal angle), defined as: $\sqrt{[(\Delta\eta)^2+(\Delta\phi)^2]}$		
\black \lambda		Δη: Difference in pseudorapidity (measures "forward/backward" angle relative to beam axis). Δφ: Difference in azimuthal angle (measures "around the beam" direction). 2 means we only link a track to calorimeter clusters within a cone of radius 0.2 around the track's extrapolated position.		
vvny	hy This Matters in PFA			
Ч	■ Precision Matching			
		Ensures the energy subtracted from calorimeters truly belongs to the charged track.		
		Too large (e.g., ΔR <0.4): Risks including energy from pile-up or nearby particles \rightarrow double-counting.		
		Too small (e.g., ΔR <0.1): May miss parts of the particle's shower \rightarrow energy loss.		
	Pile-Up Resilience			
		At HL-LHC (μ≈200), the detector is crowded. ΔR<0.2 isolates the core shower while excluding contamination:		
		Shower width ~0.1-0.15 in $\eta/\phi \rightarrow \Delta R < 0.2$ safely contains >95% of energy.		
	Forward Region Specifics			
		In coarse-grained forward calorimeters (HEC/FCaI), showers spread wider.		
		We validated ΔR<0.2 still captures the dominant energy fraction (see cell-ordering plots on Slide 13: energy density drops sharply beyond		
		ΔR =0.15).		