

Overview of the status of the High Granularity Timing Detector for the ATLAS phase 2 upgrade

Rachid Mazini
Mukesh Kumar, Thabo Lepota, Katlego Machethe
Wits University

Outline

- Motivation for timing in the future ATLAS detector
- HGTD timing-detector concept
- Overview of LGADs and ALTIROC
- HGTD module assembly, Disks, Vessels
- Involvement of Wits/ICPP in HGTD

High Luminosity LHC

High Luminosity LHC (HL-LHC):

- Upgrade of the Large Hadron Collider, enhancing beam intensity, emittance and final focus
 - → increase of the instantaneous luminosity by factor ~4 up to 7.5×10³⁴ cm⁻²s⁻¹
- Leads to more challenging data-taking conditions for the experiments: event pile-up, radiation damage
- HL-LHC installation and upgrades of the LHC detectors during long shutdown 2026-2030

https://hilumilhc.web.cern.ch/content/hl-lhc-project

July 8th, 2025

ATLAS detector challenges at HL-LHC

- Expected **pile-up** in the ATLAS detector: $\langle \mu \rangle = 200$ interactions per bunch crossing (on average 1.6 vertices/mm)
- Highest rates in **forward detector regions**, where tracker resolution is poorest: correct assignment of tracks to vertices becomes challenging
- Adding precision-timing information in the forward regions improves pile-up rejection and vertex reconstruction
- With 50 ps MIP time resolution, the pile-up suppression is expected to improve by a

factor of ~ 6

true track m

Measured through ITk

High Granularity Timing Detector

High Granularity Timing Detector (HGTD):

- Placed between Inner Tracker (ITk) and Liquid Argon Calorimeter
- Active area coverage: $2.4 < |\eta| < 4.0$
- Consists of 8032 modules (2 LGAD sensors + 2 r/o ASICs each)
 6.4 m² of silicon sensors
- Radiation hardness requirements (with replacements of the inner (every 1000 fb) and middle (every 2000 fb) rings):
 - Maximum fluence: 2.5×10¹⁵ n_{eq}/cm²; TID: 2 MGy
- Operating temperature -30°C (CO₂ dual phase cooling)
- Two instrumented double layers per side
- Overlap between modules on all rings
- Track-time resolution: 35 ps (start) 50 ps (end)

Performance improvement with HGTD

HGTD Technical Design Report (2020 https://cds.cern.ch/record/2719855/

- Track-timing information from HGTD will allow for recovering the performance in the forward detector regions:
 - Improved rejection of pile-up
 - Increased **lepton-isolation** efficiency
- HGTD also allows for measuring the luminosity bunch-by-bunch (hit counting at 40 MHz), <1% accuracy

Improvement in track and Vertex reconstruction

After 2 ab⁻¹, two innermost layers of ITk will be replaced

⇒ Opportunity to include a 4-dimensional (4D) tracker in the central region capable of measure simultaneously spatial and temporal coordinates

ATL-PHYS-PUB-2022-047

200 [sd]

-200

- Time of the primary vertex can be reconstructed using also central tracks
- Resolution down to 7.2 ps with single track resolution of 30 ps

-1.0

-1.5

The HGTD LGAD Sensors

- Low Gain Avalanche Diod (LGAD)
 technology used for HGTD 15×15 pads
- Pad size: 1.3 mm×1.3 mm
- 3.6 M channels
- Physical / active thickness: 775 μm / 50 μm
- ~22k sensors to be produced

LGAD Technology:

- n-on-p sensor with p-type mult. layer
- extra p-type gain-layer for moderate gain 10-40
- → Fast **rise time** and larger **signal-to- noise** ratio
- → Excellent time resolution

LGAD sensors requirements:

- Hit-time resolution: 40 ps (start) 70 ps (end)
- Collected charge per hit: 10 fC (start) 4 fC (end)
- Hit efficiency: 97 % (start) 95 % (end)

Time resolution:

$$\sigma_{\text{det}}^2 = \sigma_{\text{Landau}}^2 + \sigma_{\text{elec}}^2$$

$$\sigma_{elec}^2 = \left(\frac{t_{rise}}{S/N}\right)^2 + \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^2 + \left(\frac{TDC_{bin}}{\sqrt{12}}\right)^2$$

Jitter

Timewalk

LGAD radiation effects (I)

LGAD time resolution vs. bias voltage

- LGAD performance degrades with radiation exposure due to a loss of gain
- Recovered by increasing the bias voltage
 - Limit imposed by Single Event Burnout (SEB) effect (local breakdown of electric field) → V_{max}~550 V for 50 μm thickness
- Carbon enriched gain layer to reach lower operation voltages and thereby improved radiation hardness.

LGAD radiation effects (II)

- Radiation causes boron doping in gain layer less active (acceptor removal). This can be mitigated by carbon-enriched LGAD, in which the carbon "stabilizes" the boron doping,
- The IHEP-IME/FBK/USTC-IME LGAD with carbon,
 - Lower the acceptor removal ratio,
 - Making the senor more radiation tolerant.

See CERN Detector seminar https://indico.cern.ch/event/1088953/

LGAD sensors preproduction

IHEP-IME

52 sensors/wafer

115 wafers processed (90 already fabricated)

- Considering min. 35% yield → 2093 sensors
- Required: 200 (in-kind) +580 (CERN) sensors
 Satisfy Requirements

USTC-IME

27 wafers fabricated

- Considering min. 35% yield → 590 sensors
- Required: < 200 (in-kind)

Satisfy Requirements

9 wafers passed all the requirements

LGAD sensor production and QC

- Pre-series production of a total of **117** wafers (8") (5% of main production, 1100 sensors) recently concluded
- Sensors from two vendors: IHEP-IME and USTC-IME
- Systematic electrical measurements on all main sensors to extract leakage currents and breakdown values
- Electrical measurements on dedicated quality-control test structure (QC-TS), to monitor various technological parameters
- Irradiation tests on main sensors and QC-TS

Probe-card measurement on main sensor

Probe-card measurement on quality-control test structure (QC-TS)

https://indico.cern.ch/event/1386009/contributions/6279120/

	-		
QC Device	Parameter	Description	Technique used
	Vgl	Gain layer depletion voltage	C-V
Single LGAD	Vfd	Full depletion voltage of the device	C-V
	I@Vfd	Current at full depletion voltage	I-V
	Vbd	Device breakdown voltage	I-V
	Cpad	Electrode capacitance	C-V
PIN	Vbd	Breakdown Voltage	I-V
FIN	lleak	Leakage Current	I-V
MOS	tox	Oxide Thickness	C-V
MOS	Vfb	Flatband Voltage	C-V
VDP NA	R_sheet	Sheet Resistance for N implantation	I-R
VDP PS	R_sheet	Sheet Resistance for P implantation	I-R
VDP AI	R_sheet	Sheet Resistance for Aluminum	I-R

The ALTIROC readout ASIC

- **ALTIROC-A**

- ATLAS LGAD Timing Integrated Read-Out Chip (ALTIROC)
- **225 channels** matching LGAD sensor pixels
- 130 nm **CMOS** from TSMC
- Jitter: < 25 ps at 10 fC (< 65 ps at 4 fC)

- Discriminator threshold >= 2 fC
- TDC with 20 ps binning
- Provides Time-Of-Arrival (TOA) and Time-Over-Threshold (**TOT)** information
- Final version: **ALTIROC-A** (under test)
- Radiation hard up to 2 MGy

ALTIROC architecture

4 TDC cycles for 32 ToAs each

Jitter vs. charge for ALTIROC-A, detection threshold: 5 fC

MRV 20, 2025

Contributions to timing accuracy

sensor read-out electronics $\sigma_{\rm total}^2 = \sigma_{\rm Landau}^2 + \sigma_{\rm Timewalk}^2 + \sigma_{\rm Jitter}^2 + \sigma_{\rm TDC}^2 + \sigma_{\rm Clock}^2$

Landau Contribution:

Fluctuations of energy deposition + charge transport in the sensor

- → Mitigation: Small sensor active thickness (50 µm), saturated drift velocity
- → σ_{Landau} ≳ 25 ps

Jitter:

Due to electronics noise in the signal shape

$$\rightarrow \sigma_{\text{Jitter}} = \frac{t_{\text{rise}}}{\text{Signal/Noise}} \sim 25 \text{ ps}$$

Timewalk effect:

Time-Of-Arrival (TOA) depends on signal amplitude

$$\Rightarrow \sigma_{Landau} = \frac{V_{th}}{Signal_{trise}} \Big|_{RMS}$$

→ Can be corrected based on ToT

TDC:

From TDC binning / non-linearity

$$\rightarrow \sigma_{TDC} \ge \frac{LSB}{\sqrt{12}} = 6 \text{ ps}$$

Clock:

Jitter of the 40 MHz clock

$$\rightarrow \sigma_{Clock} < 10 \text{ ps}$$

ALTIROC tests

- Tracking and timing setup
- Micro-channel plate (MCP) for timing reference
- At from ToA and MCP timing
- Pre-production LGAD sensors and ALTIROC3 ASIC used

- \(\Delta \text{t distribution before (blue) and after (orange)} \)
 Time-Walk correction
- Operated at cold temperature (un-irradiated)

- Obtain ≈ 50 ps in average
 - Carbonated LGADs!
- Improvements implemented in ALTIROC-A
 - Final design

The HGTD Modules

An **HGTD module** consists of:

- Two **sensors** 15x15 pads (2 cm × 2 cm) each
- Two ALTIROC ASICs (2 cm × 2 cm) each
- A module flex
- A flex tail

HV wire to sensor

HGTD module assembly

Assembled hybrid undergo X-ray control

Module assembly: gluing 2 hybrids to module PCB

Wire bonding

Assembled module

Module test

Instrumented disks layout

Front side if instrumented disk (flex tails are not shown)

Design of HGTD detector is optimized to maximize number of identical components:

- all disks are instrumented equally, composed of 2 identical half-disks
- all quadrants of disk are identical
- only 6 different types of PEBs are used
- positions connectors on PEB and on 15° section of outer ring are the same for each PEB
- all pigtails and fanouts of the same type are identical
- number of identical flex tails is maximized.
- It is sufficient to consider only one quadrant of the instrumented disk
- ➤ It is sufficient to define the arrangement and lengths of PEB services Only in one of the 15° sections.

Peripheral Electronic Board (PEB)

Front-end modules connected to the PEB through Flex Tails

 Very complex PCB design (22 layers)

Peripheral board	Modules	lpGBT	bPOL12v	MUX	VTRx+
1F	55	9+3	52	9	9

 Six types of PEB to be designed (front and back side) (boards 1F, 2F, 1B and 2B can be used on both sides)

1F	2F	3F	3B	2B	1B	Total
32	32	16	16	32	32	160

1st prototype PEB (1F)

HGTD vessel

- ~300 cables and 40 optical cables connected to each vessel at outer ring
- 281 pigtails + 80 optical fanouts per vessel interconnect PEBs with cables
- HV, LV, NTC pigtails all are identical, fanouts are the same length
- Vessel is made as a Faraday cage

All sections of outer ring will be pre-assembled with services. First prototype shown in picture.

NTC sensors on modules

Contributions of Wits/ICPP to the HGTD

- In June 2025, Wits/ICPP was voted to join the HGTD project
- Our members have been contributing already to the project
 - Thabo Lepotha (see next talk): works on HGTD demonstrator and testbeam
 - Katlego Machethe (Ithemba/Wits) is working on DAQ system and PEB-FELIX interface
- Main contribution to the HGTD heater system
 - Avoid condensation effect on electronics interface between the inside vessel (-30° C) and the ATLAS Cavern
 - On going tests with mock-up of an outer ring segment

Mock-up segment

HGTD Heater tests

Al plate for optic connectors 27°C

Heater power on HV connector 6.7 W Temperature of heater 31 °C Temperature on contacts 21 °C

Heater power on LV connector 3.1 W Heater power on HV connector 6.8 W Temperature of heater 29 °C Temperature on contacts 18-19 °C

Temperature of heater 29 °C Temperature on contacts 18-20 °C

Top section of QR with heaters

Peek on left side 20°C

PEEk in middle 21°C

Al plate in middle 25°C

Peek on right side 21°C

Heaters: 80/20 NiCr resistance flat wire over perimeter connectors

Bottom section of OR without heaters

Peek on side 19°C

Al plate 14°C

PEEk in middle 16°C

HGTD requirements

Heater on vessel outer ring. Redundancy a crucial issue

- Heaters on HV connectors can be connected in series: 2x2 connectors x 5 OR sections = 20 HV connectors, 8 series per vessel
- Such a grouping requires 16 heater PS channels for 2 end caps, with power of about 150 W / channel.

Heater type	50W heater	150W heter
On LV connectors	8	
On HV connectors		16
On DCS connectors	12	
On humidity sensor	1	
Total heaters	22	16

- Several PS channels are required for heaters on vessel front cover,
- Heaters should be interconnected in series and redundancy also must be implemented

2 heaters connected in parallel to the same PS channel. If one fails, another is able to heat this zone.

Conclusions

- HGTD will provide precision timing information for charged particles in the forward region of ATLAS along with luminosity measurements during full life of HL-LHC
- LGAD sensors and front-end ASICs ALTIROC meet requirements up to fluence of 2.5 x 10¹⁵ n_{eq}/cm²
- HGTD design is progressing well, detector subsystems nearing Final Design and Production
- The workload is evolving towards testing of mechanics, services, cooling, back-end electronics, preparing for detector assembly. Test beam activity are ongoing.
- Tests of the HGTD demonstrator built around the 1F PEB are in progress.
- Slowly moving towards mass production and construction of HGTD
- Involvement oof Wits/ICPP presents am opportunity to develop local expertise in Silicon detector system
- Heater system design, optimisation

Additional material

Low Gain Avalance Diode (LGAD) sensors

overview of contributions to the time resolution:

QC-TS pre-production results

- Measurements on ~10 QC-TS per wafer for both vendors
- Results consistent within the specifications / expectations
 - Break-down voltage: V_{bd} spread 5.6% 7.6% (spec: <8%)
 - Full-depletion voltage: V_{fd}<30 V (spec: <70 V), spread <10%
 → resistivity >1 kOhm*cm
 - Gain-layer depletion voltage: 24 V < V_{gl} < 55 V
 - Detector capacitance:
 - Cdet ~ 4.2-4.4 pF (spec: <4.5 pF)
 - Oxide thickness: $\sigma(t_{ox})/t_{ox} < 3\%$
 - n+ sheet resistance: <0.3% spread
 - Inter-pad gap: ≲100 µm

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HGTDPublicPlots https://indico.cern.ch/event/1386009/contributions/6279120

Jitter Measurements

- Infrared laser (1064 nm, sub-mm focus) used to determine jitter
- Uniform deposition of constant energy in the sensor
 - → Landau and Timewalk contributions negligible
- Time reference: precise signal (3 ps jitter) from laser driver
- Jitter measured to be ~25 ps
 - → Consistent with ASIC test-bench measurements

TDC bin corrections

- ToA measurement based on Time-to-Digital Converter (TDC)
- Quantization error given by TDC quantization step size (Least Significant Bit = LSB)
- Nominal LSB value: 20 ps
- Observed LSB shows variations over the 128 ToA bins from Differential Non Linearity (DNL)
- LSB values depend also on temperature and stability of power supplies
- → Several methods developed for **in-situ calibration** of LSBs per-pixel:
 - Internal charge injection in ASIC
 - Data-driven calibration from high-statistics test-beam data sets:
 - Either one global LSB value per pixel
 - Or one LSB value per group of **32 ToAs**
 - → gives best results

ToA distribution in test beam

ATLAS HGTD Test Beam Preliminary
February 2025, B110/IHEP-IME sensor
HV: 190 V, T°: 18°C, Threshold: 7.2 fC

Distribution of 4 LSBs per pixel

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HGTDPublicPlots

Timewalk Correction

- Timewalk effect: ToA depends on signal amplitude (at constant threshold)
- → ToA and ToT are correlated
- Use correlation to obtain correction
- Time-walk effect largely reduced after correction

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HGTDPublicPlots

Hybrid test-beam measurements – ToA calibration

- Time resolution is extracted from residuals between ToA measurement and MCP-PMT time reference (tracking not used → sample contains events from the pixel borders)
- ToA values are calibrated:
 - LSB of TDC (from charge injection / data-driven)
 - Time-walk effects (data-driven)
- Time resolution improves significantly when using data-driven methods and accounting for DNL of TDC

Hybrid test-beam performance

Performance measurements in **optimal conditions**: Low temp. (-35°), high bias voltage (>120 V), low thr. (4 fC)

→ Timing precision in core of distribution down to ~40 ps

Hybrid timing measurements with β-source

Sr-90 source (~ 30MBq)

MCP-PMT (time reference) ALTIROC-A + LGAD test board*

- Least Significant Bit (**LSB**) calibrated to 20 ps (charge inj.)
- Time-walk correction applied for DUT; CFD for MCP-PMT
- Time **resolution**: Std. dev. of Gaussian fit of TOA_{DUT} TOA_N
 - ~ 45 ps achieved for 7 fC threshold, consistent with test-beam results
 - **Uniform** behavior for all pixels

Carbon implantation

The reduction of effective doping in the gain layer is caused by the "acceptor removal" process
 →LGAD gain reduction after non-ionizing radiation damage.

Explored use of different gain layer designs, doping materials and C-enriched substrates
 → B + C shows largest gain after irradiation (C_i + O_i → C_iO_i competes with B_i + O_i → B_iO_i)

Acceptor (B_s) removal in the gain layer after irradiation

The HGTD Modules

An **HGTD module** consists of:

- Two sensors (2 cm × 2 cm)
- Two ALTIROC ASICs (2 cm × 2 cm)
- A module flex
- A flex tail

HV wire to sensor

back-side

Wire bonds

Peripheral Electronics Board (PEB)

HGTD radiation hardness

Detector segmented into three independently replaceable rings:

Single Event Burnout (SEB)

- Irreversible breakdown triggered by a large charge deposition at high operation voltages
- Triggered by a single particle
- Large energy deposits: electric field collapse in presence of high concentration of free carriers
- Observed in several test beam campaigns
- Common effort of ATLAS/CMS/RD50
 collaborations: determine a safe operating voltage
- Systematically studied at HGTD test beams
- Safe operating zone: 11V/μm
- → For 50µm sensor thickness: **550V**

Source: L.A. Beresford et al. JINST 18 P07030

Sr-90 Test HGTD Hybrid Read-Out

