



# Measurement of the top quark Yukawa coupling from tt kinematic distributions

C.Garvey<sup>1</sup>, J. Keaveney<sup>1</sup>

#### **South African Institute for Physics**

10<sup>th</sup> July 2025



### Introduction

#### Yukawa Interaction:

- →Occurs between the fundamental fermion fields and Higgs field.
- →Fermion mass related to the strength of their Yukawa coupling
- →Forms a unique test of the SM in a sector where one could expect New Physics to play a role





### Top quark:

- →Most massive particle in SM:  $m_{top} = 172.5$  GeV
- →Provides access to the largest Yukawa coupling (Yt)
  - Predicted to be close to unity



### Extraction methods

#### Two methods to extract Y<sub>t</sub>

#### **Direct:**

Processes with top quark and Higgs in final state e.g. ttH & tH



#### **Indirect:**

Processes where virtual Higgs exchanged e.g. 4 top & tt cross-section



### **Extracting from tt cross-section**

- → tt modelling sensitive to EW corrections in production threshold region
- → Several measurements from CMS and ATLAS

#### **CMS**

Channels investigated:

- Lepton + jets
- CERN-EP-2019-119

Dilepton

CERN-EP-2020-152

#### **ATLAS**

Channels investigated:

- Lepton + jets
- Dilepton

Ongoing

**This Analysis** 

# Analysis topology

**Goal:** Extract top quark Yukawa coupling from dilepton tt production using Run 2 data

### tt production:

- via gg or qq production
- Gluon production dominant at LHC





#### Final state topology:

- 2 leptons (e/µ)
- 2+ Jets
- 2 b-jets
- MET



# Analysis strategy



- →Implemented using HATHOR 2.1-b3
  - Hathor generated weights calculated at parton level
  - Detector level distributions obtained by re-weighting simulation
- →Construct observables sensitive to Y<sub>t</sub>
  - Implemented at detector level
- →Implemented using template morphing
  - Complete set of systematic uncertainties

### Electroweak corrections

### At tt production threshold:

- tt cross-section sensitive to Yt
- Exchange of virtual Higgs





- →EW corrections simulated using Hathor
  - Calculated for gg & qq, respectively
- →Most Y<sub>t</sub> sensitive regions are low M<sub>tt</sub> & small cos\*θ



 $\times 10^{5}$ 

### **Event selection**

- →Using full Run 2 dataset [140 fb<sup>-1</sup>]
- →Focus on dilepton eµ channel
- →Backgrounds included:
  - tW, Z+jets

| Selection Criteria  |                                                        |  |
|---------------------|--------------------------------------------------------|--|
| Lepton $p_T$        | $\ell \geq 25 \text{ GeV } (\ell = e \text{ or } \mu)$ |  |
| $\int$ et $p_T$     | jet $p_T \ge 20 \text{ GeV}$                           |  |
| B-tag WP            | DL1d = 77%                                             |  |
| No. b-jets          | $N_b \ge 2$                                            |  |
| $m_{\ell\ell}^{OS}$ | $m_{\ell\ell}^{OS} \ge 10 \text{ GeV}$                 |  |



### Kinematic distributions

- →EW corrections are calculated at parton level
- → Need to obtain observables at **detector level**

#### **Constructed observables:**

- →Use measured decay products of tt pair
- $\rightarrow$ Serve as proxy for M<sub>tt</sub> &  $\Delta y_{tt}$
- →At detector level:
  - M<sub>Ilbb</sub>
  - $\circ$   $cos^*\theta_{lb}$

#### Are there more sensitive observables?

→Reconstruct the true M<sub>tt</sub> from detector level objects?

### Figure showing the mass of the measured decay products at detector level for $t\bar{t}$



# Reconstructing m<sub>tt</sub>

**Aim:** Improve sensitivity by reconstructing the mass of the tt system using ML

### **Training:**

- →Implemented simple DNN using Keras
- → Architecture:
  - 3 hidden Layers
  - Nodes: 24, 12, 6, 1 output

#### Input variables:

- $\rightarrow$ M<sub>lb</sub> combinations, E<sup>T</sup><sub>miss</sub>
- $\rightarrow \Delta R$  between Ib systems



# Reconstructing m<sub>tt</sub>





### Extraction method

- →Binned profile likelihood fit
- →Extraction implemented using template morphing
  - Templates are created using EW corrections for Y<sub>t</sub> = 0,1,2 & 3
  - Linearly interpolating between templates
  - Parameter of interest: Y<sup>2</sup>,
- →Complete set of systematics



### Results

- → Results shown are blinded
- →Dominant uncertainties due to
  - tt modelling
  - B-tagging
- → Reduced uncertainties from m<sub>tt</sub> reconstruction

| Variable                                               | Extracted $Y_t$        |
|--------------------------------------------------------|------------------------|
| $\mathrm{m}_{\ell\ell bb}$                             | $1.00^{+1.73}_{-1.70}$ |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $1.00^{+1.56}_{-1.50}$ |



### Results

- → Results shown are blinded
- → Dominant uncertainties due to
  - tt modelling
  - B-tagging
- → Reduced uncertainties from m<sub>tt</sub> reconstruction

| Variable                    | Extracted $Y_t$        |
|-----------------------------|------------------------|
| $\mathrm{m}_{\ell\ell bb}$  | $1.00^{+1.73}_{-1.70}$ |
| $ m reconstructed \ m_{tt}$ | $1.00^{+1.56}_{-1.50}$ |



### Conclusion

- →Indirect measurement of top quark Yukawa coupling in dilepton channel
- →Electroweak corrections implemented using Hathor
- →Constructed variables sensitive to variations in Y<sub>t</sub>
  - Implemented reconstruction of m<sub>tt</sub> using ML
- →Blinded extraction of Y<sub>t</sub> using binned profile likelihood fit
- → Dominant uncertainties due to:
  - tī modelling
  - B-tagging





### Thank you for your time

Any Questions?



# Reconstructing mtt



