Searches for scalar resonances with di-photon in association with leptons and taus using the easyjet analysis framework in the ATLAS Detector at the LHC

Presenter: Kutlwano Makgetha

In collaboration with: Vuyolwethu Kakancu, Mukesh Kumar, Rachid Mazini, Njokweni Mbuyiswa, Bruce Mellado, Reda Mekouar, Baballo-Victor Ndhlovu, Kgothatso Ntumbe and Phuti Rapheeha

Outline

- The Simplified Model
- Framework workflow
- Background samples
- Signal Filters
- Object Selections
- Kinematic Distributions
- Conclusions

The Simplified Model

- Mass Scans H [250 400] GeV, S [150 275] GeV, S' [95-125] GeV (J. Phys. G 46 (2019) no.11, 115001 and Nature Review. Phys. 6, 294–309 (2024))
- S decays to two photons $(\gamma \gamma)$ and S' decays to two taus/bjets $(\tau /b's)$
- Detailed information can be seen in <u>Vuyolwethu's</u> and <u>Njokweni's</u> talk
- Final states of interests : $\gamma\gamma + 0l1\tau$, $0l2\tau$, $1l1\tau$, $2l0\tau$, $1l0\tau$, 1l1b
- My talk will be about the $\gamma\gamma + 0l1\tau$, $1l1\tau$ final states [Background study using the signal final states]
- Kgothatso will give a talk about the $\gamma\gamma+2l0 au$, 1l0 au, 1l1b final states
- The tau candidate presented in this framework is the **hadronic tau**

$$qq \to H \to SS'$$

Easyjet Framework workflow

Background processes

- Our two dominant background processes (above as shown)
- Since Top quarks decay via the weak interaction, their decays often result in W bosons and a b quark.
- W bosons have a chance to decay into any of the three charged leptons + missing energy.
- Hence we chose the diphoton + top quark pair production for this talk.

Signal processes and Filters

- As it stands we have submitted the sample request for the two signal processes mentioned on slide 3.
- We applied the following filters:

Selection Criteria	Tau Filter	MultiBjet Filter
Minimum Transverse Momentum (p_T)	$P_{T_{\ell=e,\mu}}$ = 12 GeV $P_{T_{had}}$ = 25 GeV	$P_{T ext{b-quark}}$ = 5 GeV $P_{T_{Jet}}$ = 20 GeV $P_{T ext{lead}_{Jet}}$ = 5 GeV
Maximum Pseudorapidity (η)	2.5	2.5
Number of objects required	2	2

•
$$\eta = -In(tan\frac{\theta}{2})$$

• $\Delta R < 0.4$

Object Selections ($\gamma\gamma + 0l1\tau$ Final State)

Photons

- Diphoton triggers
- 2 Loose and non Isolated photons
- lead (sub) $p_T \ge 35 (25) GeV$
- 1.37 < $|\eta|$ < 1.52 rejected and $|\eta|$ \leq 2.37

Hadronic Tau

- RNN Loose WP
- $p_T \ge 25 \text{ GeV}$
- $1.37 < |\eta| < 1.52$ rejected and $|\eta| < 2.5$
- For photon Identification we used the **FixedCutLoose** Working Point (WP) because we are looking for higher signal efficiency.
- For photon Isolation we used the <u>NonIso</u> WP because we are looking to perform background estimation.
- For the hadronic tau we used the **Recurrent Neural Network Loose** WP because we want to include more tau candidates.
- After passing the above object selections we require the 0 lepton and 1 Tau final state for analysis
- More on the selections see paper <u>ATLAS-CONF-2024-005</u>

Object Selections ($\gamma\gamma + 1l1\tau$ Final State)

Photons

- Diphoton triggers
- 2 Loose and non Isolated photons
- lead (sub) $p_T \ge 35 (25) \text{ GeV}$
- 1.37 $< |\eta| <$ 1.52 excluded and $|\eta| \le 2.37$

Hadronic Tau

- RNN Loose WP
- $p_T \ge 25$ GeV
- 1.37 $< |\eta| <$ 1.52 excluded and $|\eta| <$ 2.5

Leptons (Electron/Muon)

- The electon must have $p_T \ge 10$ GeV and $|1.37 < |\eta| < 1.52$ excluded and $|\eta| < 2.5$ at MediumDNNLoose Var Rad WP
- The muon must have $p_T \ge 10$ GeV and $|\eta| < 2.5$ at MediumPflow Loose Var

- For the electron we used the <u>MediumDNNLooseVarRad</u> WP to identify electrons that may have radiated photons and keep a high signal efficiency.
- For the muon we used <u>MediumPflowLooseVarRad</u> WP identify muons that have radiated energy and work with particle flow objects for better event construction.
- After passing the above object selections we require 1 lepton and 1 Tau final state for further study.
- More on the selections see paper ATLAS-CONF-2024-005

SAIP 2025

10

12

13

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

14

15

16

17

18

19

20

22

23

24

25

26

Conclusions

28

- We submitted requests for the production of the dilepton and one lepton final state (see Njokweni's Talk).
- About to receive the signal samples ($\gamma\gamma + 2\tau$ /b's final states) and the next step is to include them in our analysis.
- Successfully managed to make the desired object selections for our background.
- Background characterisation is the next step to follow.

THANK YOU FOR LISTENING

Email:kutlwano.chongo.makgetha@cern.ch

30

BACK UP SLIDES

The layout of the ATLAS Experiment

31

- The z –axis aligns with the beam direction, the x-axis point toward the center of the LHC ring and the y-axis points upward.
- While the polar angle θ is sometimes used, pseudorapidity η is preferred for its Lorentz invariance under boosts along the beam direction and in relativistic terms η closely approximates rapidity y.
- $y = \frac{1}{2} In(\frac{E+Pz}{E-Pz})$ where E is the particle's energy and Pz is the longitudinal momentum.

Cutflow Table ($\gamma\gamma + 0l1\tau$ Final State)

32

Description	Events Passed
Events Generated	534144
Events Passing the Trigger	534144
Pass Photon WPs	405764
Pass Photon Selections	405558
Pass Hadronic Tau Selections	60732
Pass 0 lepton 1 tau	60732

Cutflow Table ($\gamma\gamma + 1l1\tau$ Final State)

33

Description	Events Passed
Events Generated	534144
Events Passing the Trigger	534144
Pass Photon WPs	405764
Pass Photon Selections	405558
Pass Electron Selections	391766
Pass Muon Selections	382576
Pass Hadronic Tau Selections	367598
Pass 1 lepton 1 tau	19246

34

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Ν

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

09 July 2025 SAIP 2025 35

36

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

09 July 2025 SAIP 2025 38

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 0l1\tau$ Final State)

09 July 2025 SAIP 2025 46

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

09 July 2025 SAIP 2025 51

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

09 July 2025 SAIP 2025 62

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

Kinematic Distributions ($\gamma\gamma + 1l1\tau$ Final State)

