The use of Machine Learning techniques to analyze the $gg \rightarrow h \rightarrow Z\gamma$ process within the SMEFT framework at the Large Hadron Collider (LHC)

Presenter: Kutlwano Makgetha

In collaboration with: Srimoy Bhattacharya, Abdualazem Fadol, Mukesh Kumar, Njokweni Mbuyiswa, Bruce Mellado

Outline

Introduction

Model and Framework

• MC studies with implementation of ML

Conclusion

INTRODUCTION

• $h \rightarrow ZV$ is a rare process in the SM and it can only happen at NLO.

- Recent study [arXiv:1801.01136] shows that even with NLO QCD corrections and the signal-background interference, this excess in $h \to Z \gamma$ cannot be explained within the SM which currently overshoots the measured signal rate by 2.2σ .
- With this motivation we perform our analysis of $h \to Z \gamma$ decay channel with higgs production through gluon gluon-fusion and constraint the corresponding six-dimension Wilson coefficients in SMEFT through the cross section measurement and different sensitive kinematic observables.

Model and Framework

- In this study the Higgs boson decays in the context of the Standard Model Effective Field Theory (SMEFT), which is a framework for describing new physics beyond the Standard Model of particle physics.
- The SMEFT is based on the assumption that new physics effects can be parameterized by higher-dimensional operators, which are suppressed by powers of a high energy scale Λ .

- The paper [arXiv:1801.01136] focuses on two specific decay modes of the Higgs boson: the decay to a pair of Z bosons (ZZ) and the decay to a Z boson and a photon ($\mathbb{Z}_{\mathbf{V}}$).
- For more details **N Mbuyiswa** has given a talk on this.

Object Selections

- \bullet $|\eta_{\mu}| < 2.7$
- $p_T^{\mu} > 10 \; GeV$
- $|\eta_e| < 2.47$ excluding $(1.37 < |\eta_e| < 1.52)$
- $p_T^e > 10 \, GeV$
- $|\eta_{\gamma}| < 2.47$ excluding $(1.37 < |\eta_{\gamma}| < 1.52)$
- $p_T < 10 \; GeV$
- Anti- k_t with $\Delta R = 0.4$, $|\eta_j| < 4.4$
- \bullet $p_T^j > 25 \, GeV$

ggF leptonic channel feynman diagrams

- Cross-section 17.63 pb for background
- Cross-section 0.1525 pb for signal

ggF leptonic channel feature importance

Left (+1) and right (-1)

ggF leptonic channel important kinematics

ggF leptonic channel correlation matrix

ML Approach

PARAMETER	VALUE		
Classifier	Extreme Gradient Boost		
split	70:30:10		
N estimators	3500		
Learning rate	0.05		
reg lambda	1		
reg alpha	0.1		
gamma	0.1		
objective	binary:logistic		
eval metric	logloss		
early stopping rounds	50		
max depth	5		

KDE Calculation

The Z binned significance is calculated as:

$$Z = \sqrt{2\sum_{i} \left[(S_i + B_i) \cdot \ln\left(1 + \frac{S_i}{B_i}\right) - S_i \right]}$$

- Bandwidth parameter ($\epsilon = 0.1$)
- Smaller ϵ provides finer resolution but risks overfitting
- Larger ϵ provides smoother approximations but may underfit the events
- For more information see paper [<u>arXiv:2211.04806v2</u>]

ggF leptonic channel KDE plot

Left (+1) and right (-1)

ROC Curves for leptonic channel

Left (+1) and right (-1)

ggF hadronic channel feynman diagram and feature importance

ggF hadronic channel important kinematics

ggF hadronic channel correlation matrix

ggF (hadronic channel KDE plot and ROC curve)

ggF neutrino channel feynman diagram and feature importance

- Cross-section 13.94 pb for background
- Cross-section 0.015 pb for signal

ggF neutrino channel important kinematics

ggF Neutrino channel correlation matrix

Neutrino channel KDE Plot and ROC Curve

KDE Scores

Z Scores	ggF leptonic (+1)	ggF leptonic (-1)	ggF jet	ggF Neutrino
10 Bins	17.48	17.52	4.89	6.27
25 bins	18.28	18.65	4.96	6.48
50 bins	18.68	18.68	4.99	6.59
100 bins	18.83	19.01	5.04	6.67
KDE	24.78	25.04	8.72	11.34

Conclusions

- KDE improves with more ensembles since it avoids binning our classifiers' outputs while the binning method benefits from increased bin counts.
- We are working on introducing three more production channels (VBF,VH and ttH).
- We are about to generate new samples using the best fit values of the Wilson Coefficients.

