Preparing for Diphoton Resonance Searches in the Leptonic, 0-τ Final States: Event Selection and Background Characterization Using ATLAS Run 3 Data

Presentor: Kgothatso Ntumbe

Date: 09 July 2025

Collaborators: Baballo-Victor Ndhlovu, Bruce Mellado, Kutlwano Makgetha, Mukesh Kumar, Njokweni Mbuyiswa, Phuti Rapheeha, Rachid Mazini, Reda Mekouar, Thabo Pilusa, Vuyolwethu Kakancu.

Outline

- Final State Motivation
- Analysis Framework
- Background Characteristics
- Event Selection Strategy
- Object Kinematics from Background
- Conclusion

Final State Motivation

Physics Motivation

- Sensitive to extended Higgs sector models like
 - 2HDM+S (arXiv:1606.01674 [hep-ph]) (see Vuyolwethu Kakancu presentation)
 Also aligns with ATLAS searches in similar final states
- > bbγγ (<u>arXiv:2404.12915</u> [hep-ex])
 - \triangleright $\ell\ell\gamma\gamma$ (arXiv:2405.20926 [hep-ex])
- ☐ Predicted decay,
 - \rightarrow $H \rightarrow SS'$, with
 - $> S \rightarrow \gamma \gamma$,
 - \triangleright S' \rightarrow WW, $\tau\tau$, bb

Final States

- Signatures : $\gamma\gamma+1\ell$, $\gamma\gamma+2\ell$, with 0 hadronic taus
- ☐ Clean, fully reconstructable, low background
- High photon and lepton ID efficiency in ATLAS
- Why $\gamma\gamma+1\ell$, $\gamma\gamma+2\ell$, $0-\tau$?
 - Avoids hadronic reconstruction complications
 - \Box Suppresses backgrounds like $\bar{t}t\gamma\gamma$
 - ☐ Focus on leptonic decays of *WW**

Analysis Framework (Easyjet)

- Framework
 - Easyjet https://gitlab.cern.ch/easyjet/easyjet
- Purpose

 - Ensures reproducibility, standardized object definitions and integration with official recommendations Ntuple production

Implemented so far

- Photon and Lepton object definitions using ATLAS-recommended ID and Isolation
- Tau veto (no hadronic taus)
 Event-level selection logic
 Output configuration
 - Output configuration for:
 - Histograms (kinematics, ID, Isolation)
 Cutflows

Advantages

- Scalable for addition final states (e.g $\gamma\gamma+1\ell+b$, $\gamma\gamma+1\tau$, $\gamma\gamma+2\tau$)
- Easy integration with signal once available.

Background Characterization

- Dominant background(and why?)
 - Produces **two real leptons** from $W \rightarrow \ell \nu$ decays of the top quarks
 - ☐ Two **real photons** from
 - > Final state radiation (FSR)
 - ➤ Initial state radiation (ISR)
 - Radiative top decays

Credit:Observation of ttyy production at \sqrt{s} =13 TeV with the ATLAS detector arXiv:2506.05018 [hep-ex]

- \Box Final states mimics signal topology: $\gamma\gamma+1\ell$, $\gamma\gamma+2\ell$, 0-τ
- Why it is critical in this phase?
 - Signal MC is **not yet available**, so all current studies are **based on background**.
 - ☐ Used to:
 - > Validate event selection and cuts,
 - > Produce kinematic distributions,
 - > Test trigger thresholds,
 - > Prepare for signal-region optimization.
 - Helps in shaping expectations for control region definitions later.

Other relative backgrounds

- \Box $\gamma\gamma+jj$:
 - Events with **two prompt photons** plus additional jets can mimic signal if jets overlap or produce fake leptons.
 - \triangleright Requires careful modeling and understanding, especially when no τ 's are present.
 - need more information for minimization and fake rates.

Event Selection for $\gamma\gamma+1\ell$, 0- τ

Photon selection

- Require = 2
- ID: Loose
- Isolation: FixedCutLoose
- Primary and Secondary

 - > $p_T \ge 35 \text{ GeV (leading)}$ > $p_T \ge 25 \text{ GeV (subleading)}$ > $|\eta| < 2.37 (1.37 < |\eta| < 1.52)$

Electron selection

- Require =1
- ID: MediumLH
- Isolation: Loose
- Primary
 - $p_T > 10 \text{ GeV (minimum)}$ |n| < 2.5

Muon selection

- Require = 1
 - ID: Medium
 - Isolation: Loose
 - Primary
 - $> p_T > 10 \text{ GeV (minimum)}$
 - $| \eta | < 2.5$

Triggers selection:

scale_factor: doSF: false

```
chains:
  '2022':
```

- 'HLT_g35_medium_g25_medium_L12EM20VH' - 'HLT_2g50_loose_L12EM20VH'
- 'HLT_2g22_tight_L12EM15VHI'
- 'HLT_g35_medium_g25_medium_L12eEM24L' - 'HLT 2g50 loose L12eEM24L'
- 'HLT_g45_medium_g20_medium_L1eEM40L_2eEM18L'
- 'HLT_2g22_tight_L12eEM18M' '2024':
- 'HLT_g35_medium_g25_medium_L12eEM24L'

Event Selection for $\gamma\gamma+2\ell$, 0- τ

Photon selection

- Require = 2
- ID: Loose
- Isolation: FixedCutLoose
- Primary and Secondary

 - > $p_T \ge 35 \text{ GeV (leading)}$ > $p_T \ge 25 \text{ GeV (subleading)}$
 - $> |\eta| < 2.37 (1.37 < |\eta| < 1.52)$

Electron selection

- Require = 2
- ID: MediumLH
- Isolation: Loose
- Primary and Secondary
 - \rightarrow p_T > 10 GeV (minimum)
 - $> |\eta| < 2.5$

Muon selection

- Require = 2
 - ID: Medium
 - Isolation: Loose
 - Primary and Secondary
 - $> p_> 10 \text{ GeV (minimum)}$
 - $> |\eta|^{T} < 2.5$

Sum of the two leptons

- Require = 2
- ID: MediumLH(electrons),
 - Medium(muons
- Isolation: Loose

Table 1: Event selection breakdown from MC23a samples.

	$\gamma\gamma jj$	$ar{t}t\gamma\gamma$
Number of Preselected events	2.24199×10^6	534144
Events passing the trigger	2.24199×10^6	534144
Cut: $\gamma\gamma + 1\ell$	1184	275872
Cut: $\gamma\gamma + 2\ell$	1	25830

Table 2: Cutflow Comparison for the $\gamma\gamma + 1\ell$ and $\gamma\gamma + 2\ell$ Final States

Table 2. Outflow Comparison for the // 12 and // 22 I mai blades					
Cut Description	$\gamma \gamma + 1\ell$		$\gamma\gamma+2\ell$		
	Events Passed	Efficiency	Events Passed	Efficiency	
Total events	534144	1.0	534144	1.0	
Pass Photon ID	405764	0.76	405764	0.76	
Pass Photon Isolation	405764	0.76	405764	0.76	
Pass Photon Selections	405558	0.76	405558	0.76	
Pass Electron Selections	392068	0.73	392068	0.73	
Pass Muon Selections	392068	0.73	392068	0.73	
Final Selection $(1\ell \text{ or } 2\ell + 0\tau)$	201682	0.38	19028	0.036	

Objects Kinematics for γγ+1ℓ, 0-τ

- Distribution Results for our objects
- Look at:
 - ☐ Photons, Electrons, and Muons:
 - \triangleright Transverse momentum, p_T
 - > Pseudorapidity, η
 - > Azimuthal angle, φ

ELECTRON

0.511 MeV/c2

PHOTONS

- Photon p_T distributions match expected cuts.
- By increasing the bin size for clear visuality, the peak for the primary photon after the cut selection is reduced.

ELECTRONS AND MUONS($\gamma\gamma+1\ell$, 0- τ)

- Looking at electrons and muons, we see more events with muons than electrons.
- In fact, over 50% of the events have zero electrons.
- This is expected due to better muon reconstruction and ID efficiency.

Primary Electron Azimuthal angle

0.025

These observations are based on **background sample** used and will be cross-checked once the signal MC becomes available.

Primary Muon Azimuthal angle

Total Number of Leptons for $\gamma\gamma+1\ell$, 0- τ

- Total lepton multiplicity peaks cleanly at 1, which confirms that our selection is correctly isolating $\gamma\gamma+1\ell$ events.
- Tau multiplicity peaks at 0 as required confirms effective tau veto in both $\gamma\gamma+1\ell$ and $\gamma\gamma+2\ell$ selections.

Objects Kinematics for $\gamma\gamma+2\ell$, $0-\tau$

- Distribution Results for our objects
- Look at:
 - Electrons and Muons:
 - \triangleright Transverse momentum, p_T
 - > Pseudorapidity, η
 - \triangleright Azimuthal angle, φ
 - Primary and Secondary

ELECTRONS AND MUONS($\gamma\gamma+2\ell$, 0- τ)

- Events with one electron and one muon are evenly distributed after selection.
- Events with two muons occur more frequently than those with two electrons.
- There is a \sim 10% higher rate of events with zero electrons compared to zero muons.

Total Number of Leptons for $\gamma\gamma+2\ell$, 0- τ

• Total lepton multiplicity peaks cleanly at 2, which confirms that our selection is correctly isolating $\gamma\gamma+2\ell$ events.

Conclusion

- Presented preliminary study of $\gamma\gamma+1\ell$ and $\gamma\gamma+2\ell$, 0- τ final states using MC23 background samples.
- Event selection strategy successfully implemented using **EasyJet** framework, with consistent photon and lepton kinematics.
- Clean lepton and tau multiplicity distributions confirm correct selection logic and tau veto.
- Object-level kinematic distributions show expected behavior, with some variations offering insights into background topology and detector effects.
- Current results serve as a foundation for validating selection cuts and preparing control regions.

Future Work

- Extend analysis to include all relevant backgrounds for both final states.
- Explore fake rates and reducible backgrounds involving jets and non-prompt leptons.
- Integrate signal MC samples (upon availability) and proceed with optimization of signal regions and sensitivity studies.

I began to realize something - to understand the future you have to understand physics. Physics of the last century gave us television, radio, microwaves, gave us the Internet, lasers, transistors, computers - all of that from physics.

— Michio Kaku —

AZ QUOTES

Thank You!!

Backup slides

PHOTONS (5GeV BIN WIDTH)

Pseudorapidity

$$\eta = -\ln\left(an\left(rac{ heta}{2}
ight)
ight)$$

- θ =90°, sharp dip near $|\eta|\approx 0$ in both distributions for the primary and secondary muons
- muons move almost perfectly **perpendicular to the beamline**, exiting through the **central barrel region**.
- But in that region, there's a **mechanical gap** between the top and bottom halves of the **barrel muon chambers**, where detector coverage is reduced.

Triggers Used


```
selection:
  chains:
    '2022':
    - 'HLT_g35_medium_g25_medium_L12EM20VH'
    - 'HLT 2g50 loose L12EM20VH'
    - 'HLT 2g22 tight L12EM15VHI'
    '2023':
    – 'HLT g35 medium g25 medium L12eEM24L'
    - 'HLT_2g50_loose_L12eEM24L'
    - 'HLT g45 medium g20 medium L1eEM40L 2eEM18L'
    - 'HLT_2g22 tight_L12eEM18M'
    '2024':
    – 'HLT g35 medium g25 medium L12eEM24L'
|scale_factor:
  doSF: false
```


or limited config. **Scale Factor Section**

2024 Triggers

- doSF: False:
 - No trigger scale factors are applied in this setup

 - Appropriate for MC-only studies
 - Scale factors will be relevant **once**
 - data is included

- HLT 2g22 tight L12EM15VHI: Two photons >22 GeV, tight ID + tighter isolation
- 2023 Triggers

2022 Triggers

- - HLT g35 medium g25 medium L12eEM24L: Same photon config as 2022, updated electron leg
- (L12eEM24L)

HLT g35 medium g25 medium L12EM20VH: Two photons (35 $\overline{\text{GeV}}$ & 25 $\overline{\text{GeV}}$, medium ID) + an

- HLT 2g50 loose L12eEM24L:
- Two loose photons >50 GeV + updated electron leg
- HLT g45 medium g20 medium L1eEM40L 2eEM 18L:
 - One photon > 45 GeV & another > 20 GeV + combination of high and moderate electron triggers

HLT 2g22 tight L12eEM18M: Two tight photons > 22 GeV + moderate electron leg

Detailed Information

Objects	Extra Working Points (WPs)
Photons	Tight, FixedcutLoose Tight, NonIso Loose, FixedCutLoose
Electrons	MediumDNN TightLH Loose_VarRad
Muons	PflowLoose_VarRad