A Search for a Scalar Resonance using Di-Photons in Association with a lepton and a b-jet with the ATLAS Detector

Presented by: Baballo-Victor Ndhlovu In collaboration with Bruce Mellado, Mukesh Kumar, Vuyolwethu Kakancu, Kutlwano Makgetha, Njokweni Mbuyiswa, Kgothatso Ntumbe

Overview

- Signal Process
- Background Process
- Object Definitions
- Event Selections
- Kinematic

Distributions

Conclusions

Signal Process

- We are interested in the final states:
 - $\gamma\gamma + 0l + 1\tau$
 - $\gamma \gamma + 0l + 2\tau$
 - $\gamma \gamma + 1l + 1\tau$
 - $\gamma\gamma + 2l + 0\tau$
 - $\gamma \gamma + 1l + 0\tau$
 - $\gamma\gamma + 1l + 1b$
- We are analysing the final state with 1 lepton (electron or muon) and 1 b-jet $(\gamma\gamma + 1l + 1b)$

$$gg \rightarrow H \rightarrow (S \rightarrow \gamma \gamma)(S'/h \rightarrow b\overline{b}/\tau^+\tau^-)$$

Mass Scans:

$$H[250 - 400] GeV,$$

 $S[150 - 275] GeV,$
 $S'[95 - 125] GeV$

Background Process

Dominant Background Processes

We are working with the di-photon top quark pair production mode

Object Definitions

These are the requirements for the candidates of selected events

Object	Transver se Moment um (p_T)	Pseudor apidity (η)	Identific ation	Isolation	ΔR
b-jet	> 25 GeV	< 2.5	DL1r tagger (deep learning)	-	0.4
Photons	lead (sub) ≥ 35 (25) GeV	< 2.37	Loose	Non isolated	-
Electrons	> 10 GeV	< 2.47	Loose	Non isolated	-
Muons	> 10 GeV	< 2.5	Medium	Loose	-

Cutflow Chart $(\gamma \gamma + l + b)$

The efficiency after applying the object selections and selecting the final state of interest in the $pp \rightarrow \gamma \gamma jj$ background

This gives an efficiency of 0.044% after choosing events that satisfy the final state

Cutflow Chart $(\gamma \gamma + l + b)$

The efficiency after applying the object selections and selecting the final state of interest $pp \rightarrow \gamma \gamma t\bar{t}$ background

This gives an efficiency of 0.154% after choosing events that satisfy the final state

Conclusions

- The 1l1b channel contributes to the broader search for the di-photon resonance
- We have submitted requests for signal Monte Carlo samples
- We have received the $\gamma\gamma$ + $2\tau/b$ sample already
- We are currently working on the Easyjet Analysis Framework

Thank You!

Email: Baballo-Victor.Ndhlovu@cern.ch

Back Up Slides

The ATLAS Detector

