Strategy for Particle Physics: Opportunities for South Africa

Bruce Mellado Wits and iThemba LABS

SAIP2025, University of the Witwatersrand, 09/07/25

Outline

☐ The (High-Luminosity) LHC **□** Performance and timelines ☐ Electron-Positron Collider Options ☐ The Physics Case **□** Luminosity expectations □ Timelines ☐ Future Hadron Colliders ☐ FCC-hh **□ SPPC** "Bridge" Projects for CERN ☐ LHeC, LEP3

The (High-Lumi) Large Hadron Collider

The Large Hadron Collider

Integrated luminosities delivered to ATLAS and CMS

Total integrated luminosity to ATLAS and CMS since LHC start: **410 fb**-1, of which **380 fb**-1 at √s ≥13 TeV

Experiment	Fraction of delivered luminosity used for analysis (2024 pp data)
ALICE	76%
ATLAS	88%
CMS	89%
LHCb	86%

The High Luminosity LHC

BUILDINGS

EXCAVATION

DEFINITION

CORES

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

SUPERCONDUCTING LINKS

Electrical transmission lines based on a hightemperature superconductor to carry the very high DC currents to the magnets from the powering systems installed in the new service tunnels near ATLAS and CMS.

COLLIMATORS

15 to 20 additional collimators and replacement of 60 collimators with improved performance to reinforce machine protection.

CRYSTAL COLLIMATORS

New crystal collimators in the IR7 cleaning insertion to improve cleaning efficiency during operation with ion beams.

Electron-Positron Collider Options

The Physics Case

Precision and Anomalies in Particle Physics are indicative of unique discovery opportunities at the EW for future e⁺e⁻ accelerators

FCC integrated program – scope

Michael Benedikt

- stage 1: FCC-ee (Z, W, H, tt̄) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp &
 AA collisions; e-h option
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within few years of the end of HL-LHC exploitation

2020 - 2045

2046 - 2065

2070 - 2100

FCC integrated program - timeline

Ambitious schedule taking into account:

- □ past experience in building colliders at CERN
- ☐ approval timeline: ESPP, Council decision
- ☐ that HL-LHC will run until 2041
- ☐ project preparatory phase with adequate resources immediately after Feasibility Study

FCC integrated program is fully documented in the three volumes of the Feasibility Study Report

- **Vol. 1:** Physics, Experiments and Detectors
- Vol. 2: Accelerators, Technical Infrastructures, Safety Concepts
- Vol. 3: Civil Engineering, Implementation & Sustainability

submitted for publication to EPJ (Springer-Nature)

Three FSR volumes & other FCC-related input to 2025/26 European Strategy Update posted at https://indico.cern.ch/event/1534205/

Reference layout and implementation: PA31 - 90.7 km

Layout chosen out of ~ 100 initial variants, based on several criterias:

- geology,
- **surface constraints** (land availability, urbanistic, etc.),
- environment, (protected zones),
- infrastructure (electricity, transport),
- machine performance

"Avoid-reduce-compensate" principle of EU and French regulations.

Overall lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold symmetry

Key Features of the Civil Engineering

Michael Benedikt

- 90.7 km main tunnel with an internal diameter of 5.5 m.
- Depth varies between 50m and 560m.
- 12 shafts up to 400 m deep and 18 m in diameter.
- 2 larger experiment caverns (35m span).
- 2 smaller experiment caverns (span 25m).
- >70 small caverns.
- 5 km transfer tunnel from the surface.
- 3 km of klystron gallery tunnels.
- Technical buildings on 8 surface sites
- Injector FCC-ee: high-energy linac at CERN Prevessin site

CE Construction carbon footprint estimate (A1 - A5):

Total CE: 530 000 - 1 184 000 tCO₂(eq)

Assessed according to European Norms, (EN 17472, EN15804+A2)

Schematic Layout of the FCC ee Underground Structures

FCC – main tunnel integration – 5.5 m inner diameter

FCC-ee arc

FCC-ee 400 MHz RF section

FCC-hh arc

Optimum placement of FCC tunnel and geology

Michael Benedikt

Tunneling mainly in molasse layer (soft rock), well suited for fast, low-risk TBM construction.

6 million m³ excavated volume → 8.5 million m³ excavation material on surface

CE Designs of all underground structures developed

Average shaft depths ~240 m

To fix the vertical position of the tunnel, interfaces between geological layers have to be known

FCC-ee main parameters and operation plan

parameter	Z	ww	H (ZH)	1	tī
Collision energy √s [GeV]	88, 91, 94	157, 163	240	340-350	365
synchrotron radiation/beam [MW]	50	50	50	50	50
beam current [mA]	1294	135	26.8	6.0	5.1
number bunches / beam	11200	1852	300	70	64
total RF voltage 400 / 800 MHz [GV]	0.08 / 0	1.0 / 0	2.1 / 0	2.1 / 7.4	2.1 / 9.2
luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	144	20	7.5	1.8	1.4
luminosity / year [ab ⁻¹]	68	9.6	3.6	0.83	0.67
run time (including lumi ramp-up) [years]	4	2	3	1	4
total integrated luminosity [ab-1]	205	19.2	10.8	0.4	2.7
total number of events	6 10 ¹² Z	2.4 10 ⁸ WW (incl. WW at higher √s)	2.2 10 ⁶ ZH 65k WW → H		+ 370k ZH WW → H

Circular Electron Positron Collider (CEPC) Yifang Wang

- Since 2005, we were thinking about the next machine after BEPCII/BESIII
- After its discovery, we realized that Higgs is the best portal for new physics and for the future of HEP
- The idea of a Circular e+e- Collider(CEPC) followed by a possible Super protonproton collider(SPPC) was firstly proposed in Sep. 2012, and reported at Fermilab during the workshop: "Higgs Factories 2012" in Oct. 2012
- · It quickly gained momentum in China and in the world

arXiv:1302.3318[physics.acc-ph]

CEPC Layout and Design

Yifang Wang

- 100km circumference
- Compatible tunnel for CEPC and SPPC
- Baseline: 100 km, 30 MW;
 Upgradeable to 50 MW, High Lumi Z, ttbar
- Switchable operation: Higgs, W/Z, top
- A very high energy Synchrotron radiation facility

CEPC Planning and Schedule

Yifang Wang

- CEPC plans to submit the proposal to the central government(NDRC) within the "15th five year plan"
- For this purpose, CAS organized studies and reviews
- CEPC was ranked by CAS as the No. 1 for HEP & NP, and No.2 for Basic Science
- We are waiting for the 2nd review by CAS later this year
- Waiting for the "call for proposals" by NDRC by the end of this year

NDRC: National Development and Reform commission

CEPC Site Selection

- All sites have been investigated: good geology, mostly granite
- · Good living conditions, and local support

- Site selection will compare geology, electricity supply, transportation, environment for foreigners, local support & economy,...
- Final decision will depend on the negotiation between the central and local governments

26

CEPC Operation Plan

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. /IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. /yr (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
н*	240	10	50	8.3	2.2	21.6	4.3×10^{6}
	2.0	10	30****	5	1.3	13	2.6×10^6
Z	04	_	50	192**	50	100	4.1 × 10 ¹²
	91	2	30****	115**	30	60	2.5×10^{12}
W	4.00		50	26.7	6.9	6.9	2.1×10^8
	160	1	30****	16	4.2	4.2	1.3×10^8
tī	360	5	50	0.8	0.2	1.0	0.6×10^6
	500		30****	0.5	0.13	0.65	0.4×10^{6}

^{**} Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

^{***} Calculated using 3,600 hours per year for data collection.

^{**** 30} MW leaves room for international in-kind contributions

Operating Scenario for a Linear Collider at CERN

Stage 1: 250-380 GeV

precision Higgs mass and total $\sigma(ZH)$ precision Higgs couplings and total width to % level resonance/compositeness search in ffbar, WW to 10's TeV 1-yr excursion to the Z pole - $\sin^2\theta_W$ to 3e-6

Stage 2: 550 GeV

precision Higgs couplings and total width to sub-% level top quark Yukawa to 3%, Higgs self-coupling to 11% top quark electroweak couplings to 0.1% resonance/compositeness search in ffbar, WW to 50 TeV 1-yr excursion to the ttbar threshold - mt to 40 MeV

Higher energies: 1000 GeV or above

top quark Yukawa to 1%, Higgs self-coupling in WW fusion Higgsino search to 500 GeV follow up HL-LHC discoveries of new Higgs and electroweak states

Fixed target program: dark sector, nonlinear QED

arXiv:250319983

Linear Collider at CERN – Civil Engineering

Layout used for costing and drawings. Not final, can be translated, rotated and shafts can be moved.

25/24

Instantaneous Luminosity for various e⁺e⁻ collider options

Future Hadron Colliders

hadron collider peak luminosity versus centre-of-mass energy

Future Circular Hadron Collider FCC-hh

- Parameter optimization to lower electricity consumption (~max. consumption of FCC-ee)
- Magnetic field considered realistic with today's technologies (Nb₃Sn, ~14T, 1.9 K)

Main parameters FSR 2025

parameter	FCC- hh	FCC-hh CDR	HL-LHC
collision energy cms [TeV]	85	100	14
dipole field [T]	14	16	8.33
circumference [km]	90.7	97.8	26.7
beam current [A]	0.5	0.5	1.1
synchr. rad. per ring [kW]	1200	2400	7.3
peak luminos. [10 ³⁴ cm ⁻² s ⁻¹]	30	30	5 (lev.)
events/bunch crossing	1000	1000	132
stored energy/beam [GJ]	6.5	8.3	0.7
integr. luminosity / IP [fb ⁻¹]	20000	20000	3000

FCC-hh functional layout

Design Concept for a Future Super Proton-Proton Collider

Parameter	Val	Unit	
	Phase-I	Ultimate	
Center-of-mass energy	75	125-150	TeV
Nominal luminosity	1.0×10^{35}	-	cm ⁻² s ⁻¹
Number of IPs	2	2	_
Circumference	100	100	km
Injection energy	2.1	4.2	TeV
Overall cycle time	9-14	_	hours
Dipole field	12	20-24	T

https://doi.org/10.3389/fphy.2022.828878

Parameter	Value	Unit
General design parameters		
Circumference	100	km
Beam energy	37.5	TeV
Lorentz gamma	39979	
Dipole field	12	T
Dipole curvature radius	10415.4	m
Arc filling factor	0.78	
Total dipole magnet length	65.442	km
Arc length	83.9	km
Number of long straight sections	8	
Total straight section length	16.1	km
Energy gain factor in collider rings	17.86	
Injection energy	2.1	TeV
Number of IPs	2	
Revolution frequency	3.00	kHz
Physics performance and beam parameters		
Nominal luminosity per IP	1.0×10^{35}	cm ⁻² s ⁻¹
Beta function at collision	0.75	m
Circulating beam current	0.73	A
Nominal beam-beam tune shift limit per IP	0.0075	
Bunch separation	25	ns
Number of bunches	10080	
Bunch population	1.5×10^{11}	
Accumulated particles per beam	1.5×10^{15}	
Normalized rms transverse emittance	2.4	μm
Beam life time due to burn-off	14.2	h
Total inelastic cross section	147	mb
Reduction factor in luminosity	0.85	
Full crossing angle	110	µrad
rms bunch length	75.5	mm
rms IP spot size	6.8	μm
Beta at the first parasitic encounter	19.5	m
rms spot size at the first parasitic encounter	34.5	μm
Stored energy per beam	9.1	GJ
SR power per beam	1.1	MW
SR heat load at arc per aperture	12.8	W/m
Energy loss per turn	1.48	MeV

"Bridge" Projects

"Bridge" Projects Towards the 10 TeV Scale

LHeC (> 50 GeV electron beam)

E_{CM} = 0.2 - 1.3 TeV (Q²,x) range beyond HERA;

Bridge between HL-LHC and future large facility

Further exploitation of the LHC; Addition of an eh-programme

LEP3: re-using the LEP/LHC tunnel for e⁺e⁻ collisions at 230 GeV

Motivation:

- Leave room (time, budget, resources) for further development of THE machine that can probe directly the energy frontier at a constituent √s ~ 10 times LHC
- Exploit interesting physics at CERN in the meantime

Karl Jakobs

The LHeC as a "Bridge" Project

Jorgen D'Hondt, ICHEP Prague, July 2024 Néstor Armesto, DIS 2025

ep option with HL-LHC e.g. 6 years ep-only > 1 ab-1

K. Jakobs, DIS 2025, Cape Town, 28th March 2025

Max Klein (1951 - 2024)

LEP3 "Bridge" Project

Possible machine parameters:

(t.b.c, some technical details still need to be worked out)

- Luminosity: (2, 5.6, 32.5) · 10³⁴ cm⁻² s⁻¹ at (ZH, WW, Z)-energies, respectively
- · Number of interaction regions: 2
- · Synchrotron radiation power loss: 50 MW
- ZH run at 230 GeV

LEP3 is not competitive with FCC-ee or CEPC, but still has an interesting Higgs and el.weak physics programme

K. Jakobs, DIS 2025, Cape Town, 28th March 2025

Open Symposium on the European Strategy for Particle Physics, Venice 23rd - 27th 2025:

https://agenda.infn.it/event/44943/

European Strategy for Particle Physics – 2026 Update

https://europeanstrategyupdate.web.cern.ch/