

Highlights of ALICE results from heavy-flavour measurements at LHC energies

Edith Zinhle ButheleziFor the ALICE Collaboration

SAIP 2025, University of Witwatersrand 7-11 July 2025

ALICE at the CERN Large Hadron Collider (LHC)

ALICE detector Run 1 and Run 2

ALICE detector Run 1 and Run 2

Why heavy quarks?

top

≈4.183 GeV/c2

botto

- Heavy quarks are produced in initial hard-parton scatterings in hadronic collisions with high momentum transfer
- ☐ Formation time compared to the quark-gluon plasma (QGP) in ultrarelativistic lead-lead (Pb-Pb) collisions
- $\tau_{\rm HF} \lesssim \hbar/m \approx 0.05\text{-}0.1 \text{ fm/}c \ (p_{\rm T} \text{ dependent})$ $\tau_{\rm QGP \ formation} \ (LHC) \approx 0.3 \ fm/c \ PRC89 \ (2014) \ 034906$
- They experience the whole evolution of the QGP
- \rightarrow "calibrated probes" of final-state effects, including **hadronisation**, in all collision systems: proton-proton (pp), proton-lead (p-Pb) and leadlead (Pb-Pb)
- Cross sections described with a factorisation approach in quantum chromodynamics (QCD)

$$d\sigma_{AB\to H} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab\to qq}(x_a, x_b, Q^2) \otimes P(\Delta E) \otimes D_{q\to H}(z_q, Q^2)$$

- Parton distribution functions
- Partonic cross section (perturbative)
- **Energy loss**

Fragmentation functions (non-perturbative) Until very recently, hadronisation of heavy quarks into mesons or baryons, which occurs on a long space-time scales was considered to be universal, i.e. independent of the colliding particle system, in particular the same in e⁺e⁻ and pp collisions [ALICE, Phys. Rev. D 105, L011103 (2022)]

charm

strange

up

down

Heavy-quark production and hadronisation

Large data samples collected during LHC Run 2 (2015-2018) allowed ALICE to measure charm and beauty quarks produced in pp and Pb-Pb collisions by reconstructing the decays of several beauty and charm hadron species

- Investigate the hadronisation mechanism of charm quarks with Λ_c^+/D^0 baryon-to-meson cross section ratios
- ➤ Test of perturbative QCD (pQCD) calculations of charm and beauty production relying on the factorisation approach and the assumption that fragmentation functions, determined in collisions of small systems, e.g. e⁺e⁻ collisions can be used in pp ("universality")
- ➤ How does hadronisation evolve across systems from collisions of small systems (e⁺e⁻) to heavy-ion collisions (AA)?

Charm and beauty production cross section vs. energy

ALICE, Eur. Phys. J. C (2024) 84:1286

ALICE, JHEP10(2024)110

- Total $c\bar{c}$ and $b\bar{b}$ cross sections in pp and pPb collisions at $\sqrt{s_{NN}}$ = 5.02 and 13 TeV, respectively at midrapidity
- \Box cc cross sections: summing all prompt charm (D⁰, D⁺, D_s⁺) and J/ ψ mesons, and Λ_c ⁺ and Ξ_c ⁰ baryons
- \Box b \overline{b} cross sections: calculated from non-prompt D⁰, D⁺, D_s +, and Λ_c +

☐ Test of pQCD calculations: Experimental data lie on the upper edge of FONLL and NNLO uncertainty bands

PHENIX, Phys.Rev. C 84, 044905 (2011), Phys. Rev.Lett. 103 (2009) 082002, STAR, Phys. Rev. D 86, 072013 (2012), FONLL, JHEP 05 (1998) 007, NNLO, JHEP 03 (2021) 029

UA1, [Phys. Rev. D 75 (2007) 012010], CDF, Phys. Lett. B 256 (1991) 121

ALICE, JHEP 12 (2023) 086

- \square Strong enhancement of Λ_c^+/D^0 baryon-to-meson cross section ratios in pp vs. e⁺e⁻ collisions: ~4-5x higher at low p_{T} than in e⁺e⁻
- □ Data not described by PYTHIA 8 and pQCD models tuned on measurements performed in e⁺e⁻ collision, which works well for mesons

ALICE

ALICE, JHEP 12 (2023) 086

- Strong enhancement of Λ_c^+/D^0 baryon-to-meson cross section ratios in pp vs. e^+e^- collisions: ~4-5x higher at low p_T than in e^+e^-
- □ Data not described by PYTHIA 8 and pQCD models tuned on measurements performed in e⁺e⁻ collision, which works well for mesons

- No dependence on collision energy (compatible values at different collision energies)
- \square Approaching e⁺e⁻ values at high p_T
- ☐ Good agreement with
- PYTHIA 8 with colour reconnections beyond the leading colour
- Quark coalescence (partons close in phase space can recombine)
- Statistical hadronisation model (SHM) with an augmented set of charm-baryon excited states

ALICE

ALICE, JHEP 12 (2023) 086

- Strong enhancement of Λ_c^+/D^0 baryon-to-meson cross section ratios in pp vs. e^+e^- collisions: ~4-5x higher at low p_T than in e^+e^-
- □ Data not described by PYTHIA 8 and pQCD models tuned on measurements performed in e⁺e⁻ collision, which works well for mesons

- No dependence on different collision energies
- \square Approaching e⁺e⁻ values at high p_{\top}
- ☐ Good agreement with
- PYTHIA 8 with colour reconnections beyond the leading colour
- Quark-coalescence (partons close in phase space can recombine)
- Statistical hadronisation model (SHM) with augmented set of charm-baryon excited states (compared to those listed in the PDG)

Hadronisation is not a universal process Neither fragmentation (functions) are universal or sufficient; other mechanisms are needed

ALICE

ALICE, JHEP 12 (2023) 086

 \Box $\Xi_c^{0,+}/D^0$ baryon-to-meson cross-section ratios at different pp collision energies

- Enhanced production of Ξ_c relative to D⁰ in pp vs. e^+e^- collisions
- lacksquare Similar trend to that of Λ_c^+/D^0

ALICE

ALICE, JHEP 12 (2023) 086

 \Box $\Xi_c^{0,+}/D^0$ baryon-to-meson cross-section ratio in different pp collision energies

- ☐ Enhanced production of Ξ_c relative to D⁰ in pp vs. e^+e^- collisions
- lacksquare Similar trend to that of Λ_c +/D o

ALICE, JHEP 12 (2023) 086

 \Box $\Xi_c^{0,+}/D^0$ baryon-to-meson cross-section ratio in different pp collision energies

- Enhanced production of Ξ_c relative to D⁰ in pp vs. e^+e^- collisions
- $oldsymbol{\square}$ Similar trend to that of Λ_c^+/D^0

- lacktriangle Tension with predictions that describe Λ_c^+ production
 - Due to the strangeness content?
 - Difficult to conclude due to the large branching ratio uncertainties of different channels

Charm-quark fragmentation fractions in pp vs. e⁺e-

ALICE, Phys. Rev. D 105, L011103 (2022), JHEP 12 (2023) 086

- \Box Fractions of charm-quark fragmentation into charm hadron species, pp collisions at $\forall s = 5.02$ and 13 TeV
- Obtained from direct measurement of ground-state meson and baryon cross sections

☐ Values for mesons significantly lower than in e⁺e⁻[1]

Charm-quark fragmentation function in pp vs. e+e-

ALICE, Phys. Rev. D 105, L011103 (2022), JHEP 12 (2023) 086

- \Box Fractions of charm-quark fragmentation into charm hadron species, pp collisions at $\forall s = 5.02$ and 13 TeV
- Obtained from direct measurement of ground-state meson and baryon cross sections

[1]Eur. Phys. J. C 76 no. 7, (2016) 397

Baryon-to-meson cross section ratios: beauty vs. charm and light flavour

PHYSICAL REVIEW D 108, 112003 (2023)

- ☐ Investigate the hadronisation mechanism of beauty quarks
- \square ALICE measurements at mid-rapidity vs. LHCb $\Lambda_b^0/(B^0+B^+)$ at forward rapidity (2.5 < y < 4) [1]

- Similar patterns of baryon-to-meson ratio for all flavours: light, strange, charm and beauty
 - suggest a similar baryon-formation mechanism for all flavours
- All ratios are significantly higher than in e^+e^- collisions, except for $p/π^+$
- All flavours needed to constrain MC and model parameters

Hadronisation is not a universal process already in pp, with large and not understood differences vs. e⁺e⁻

- [1] LHCb, Phys. Rev. D 100,031102 (2019)
- [2] PYTHIA, Comput. Phys. Commun. 191, 159 (2015
- [3] TAMU, Phys. Lett. B 795, 117 (2019)

Heavy-quark hadronisation

- ☐ Hadronisation is not a universal process: already in pp, with large and not understood differences w.r.t. e⁺e⁻
- → How does it evolve across systems from e⁺e⁻ to AA?
 - ✓ What regulates its modification?
 - ✓ In which regimes does fragmentation dominate?
 - ✓ Which models/mechanisms can better describe the data?

Baryon-to-meson cross section ratios in p-Pb: beauty vs. charm

ALICE

Phys. Rev. C 107 (2023) 064901

Non-prompt Λ_c^+/D^0 ratios to investigate hadronisation mechanisms of beauty quarks into mesons and baryons in p-Pb at $Vs_{NN} = 5.02 \text{ TeV}$

Baryon-to-meson cross section ratios in p-Pb: Beauty vs. charm

- Non-prompt Λ_c^+/D^0 ratios to investigate hadronisation mechanisms of beauty quarks into mesons and baryons in p-Pb at $Vs_{NN} = 5.02 \text{ TeV}$
- ✓ pp collisions at 13 TeV non-prompt Λ_c^+/D^0 (mid rapidity)
- ✓ LHCb $\Lambda_{\rm b}^{+}/B^{0}$ (at forward rapidity)

Baryon-to-meson cross section ratios in p-Pb: Beauty vs. charm

Phys. Rev. C 107 (2023) 064901

- Non-prompt Λ_c^+/D^0 ratios to investigate hadronisation mechanisms of beauty quarks into mesons and baryons in p-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- ✓ pp collisions at 13 TeV non-prompt Λ_c^+/D^0 (mid rapidity)
- ✓ LHCb Λ_b^+/B^0 (at forward rapidity)

- ✓ prompt and non-prompt Λ_c^+/D^0 , p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV
- \checkmark p-Pb at $√s_{NN}$ = 8.16 TeV: $Λ_b^+/B^0$ (forward rapidity)

☐ Similar trend for charm and beauty hadrons in the same collision system

Charm meson elliptic flow (ν_2) in Run 3

- \Box ALICE Preliminary results from 2023 Pb-Pb data at $\sqrt{s_{NN}}$ = 5.36 TeV (1.5 nb⁻¹)
- ☐ Initial geometrical anisotropy translates to the momentum anisotropy of the final hadron in offcentral collisions

 $\frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} d\varphi} \approx \frac{1}{2\pi} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} \left(1 + \sum_{n=1}^{\infty} 2v_n(p_{\mathrm{T}}) cos \left[n \left(\varphi - \psi_{\mathrm{R}} \right) \right] \right)$

Fourier series: second (2^{nd}) harmonic, elliptic flow (ν_2)

- Elliptic flow (v_2) of D⁰ and D_s⁺ in Pb-Pb collisions in 30-40% centrality in the interval $4 < p_T < 5 \text{ GeV/}c$
- Charm v_2 extracted using the Scalar Product technique:
 - Simultaneous fit to invariant mass distribution and inclusive v₂ vs. invariant mass

Charm mesons production (D^0 , D^+ , D_s^+) at midrapidity vs. inclusive J/ψ at forward rapidity in Run 3 vs. light (π) hadrons at midrapidity in Run 2

- \square A positive v_2 is observed for charm mesons
 - Charm thermalisation (partial)

Charm mesons production (D^0 , D^+ , D_s^+) at midrapidity vs. inclusive J/ψ at forward rapidity in Run 3 vs. light (π) hadrons at midrapidity in Run 2

- \square A positive v_2 is observed for charm mesons
 - Charm thermalisation (partial)
- \square Apparent mass ordering at $p_T < 3 \text{ GeV/}c$
 - \triangleright Meson ν_2 hydrodynamic description

 \Box Charm mesons production (D^0 , D^+ , D_s^+) at midrapidity vs. inclusive J/ψ at forward rapidity in Run 3 vs. light (π) hadrons at midrapidity in Run 2

Charm mesons production (D^0 , D^+ , D_s^+) at midrapidity vs. inclusive J/ψ at forward rapidity in Run 3 vs. light (π) hadrons at midrapidity in Run 2

Strange charm (D_s) vs. non-strange charm (D⁰) ν_2 in Run 3

- \square v_2 of D^0 and D_s^+ is compared with TAMU predictions [1]
- \square A different v_2 for D_s^+ is observed compared to D^0 ?
 - ☐ Different mass, different rescattering, different hadronisation [2]

- Hint of lower $D_s \ v_2$ is consistent within uncertainties below 4 GeV/c
 - Analysis of 2024 and 2025 data samples may allow us to set tighter constraints needed to draw conclusions

- [1] TAMU: PRL 124 (4) (2020)
- [2] M He. Et all, PRL 110 (2013) 112301

Summary

- ☐ Heavy-quark hadronisation in our QCD laboratory in the last decade:
 - >e⁺e⁻ ~ "vacuum"
 - ➤pp collisions far from vacuum ~ many (independent) scatterings correlated by colour reconnection at hadronisation?
 - ➤ Pb-Pb collisions: dense extended system, equilibrium, flow
- ☐ Violation of hadronisation universality already in pp collisions
- ☐ Multiple parton interactions enable quark and gluon-rich environment, dense enough to influence/change hadronisation relative to e⁺e⁻ collisions

From the measurements shown, a clear picture emerges, allowing for a general trend to be

established

- ☐ Ongoing in Run 3:
- ightharpoonup Lower p_T reach expected with Run 3 data, allowing further reduction of extrapolation uncertainties
- > Spectroscopy: measuring higher mass states of heavy quarks: charm baryons, e.g. ground and excited $\Sigma_c^{0,++}$ in pp collisions at $\sqrt{s} = 13.6$ TeV
- \rightarrow large improvements expected for $\Sigma_c^{0,++}(2520)$, which is measured for the first time

Thanks for listening

ALICE Integrated Luminosity in Run 3 pp collisions

ALICE measurements in Run 2

- ☐ Test QCD-driven models
- Reference for p-Pb & Pb-Pb

☐ disentangle initial & final state effects

☐ QGP properties and characterisation

Heavy-quark in heavy ion-collisions

Initial state effects:

- Gluon saturation
- Modification of PDFs

Coalescence;

Partons close in phase space recombine into higher p_T hadrons (dominant at low p_{T})

→ Modification of the hadronisation mechanism

In-medium effects:

Energy loss: interaction of heavy quarks with the medium

$$R_{AA} = \frac{Y_{AA}}{N_{coll} \times Y_{pp}}$$

$$R_{AA} = \frac{Y_{AA}}{N_{coll} \times Y_{pp}}$$
 $R_{AA}(pT, y) = 1$, No nuclear effects $\neq 1$ Nuclear effects

Collectivity: mean free path of outgoing partons

$$\frac{\mathrm{d}^2 N}{\mathrm{d}p_{\mathrm{T}} d\varphi} \approx \frac{1}{2\pi} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} \left(1 + \sum_{n=1}^{\infty} 2v_n(p_{\mathrm{T}}) cos \left[n \left(\varphi - \psi_{\mathrm{R}} \right) \right] \right)$$

Fragmentation:

- Parton shares a fraction of its momentum with the hadron (dominant at high p_{T}
- → Modification of hadronisation mechanisms

A Large Ion Collider Experiment (ALICE)

Constraining hadronization mechanisms with Λ_c^+/D^0 production ratios in Pb-Pb collisions at $Vs_{NN} = 5.02$ TeV

Constraining hadronization mechanisms with $\Lambda c+/D0$ production ratios in Pb-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

 R_{AA} of prompt $\Lambda c+$ baryons in central (0–10%; left) and mid-central (30–50%; right), compared with the R_{AA} of prompt Ds+ and the average of prompt non-strange D mesons.

RAA compared with model predictions.

Charm Baryon-to-meson ratios in pp, p-Pb and Pb-Pb collisions

- ☐ Good agreement between ALICE and CMS in pp collisions
- \square Comparison with p-Pb: modification of the Λ_c^+/D^0 ratio in p-Pb collisions
 - > Radial-flow like effects or quark recombination

Charm Baryon-to-meson ratios in pp, p-Pb and Pb-Pb collisions

- ☐ Good agreement between ALICE and CMS in pp collisions
- \square Comparison with p-Pb: modification of the Λ_c^+/D^0 ratio in p-Pb collisions
 - Radial-flow like effects or quark recombination

Similar modification in Pb-Pb collisions, enhancement observed with centrality at intermediate p_T

Charm Baryon-to-meson ratios in pp, p-Pb and Pb-Pb collisions

- ☐ Good agreement between ALICE and CMS in pp collisions
- \square Comparison with p-Pb: Modification of the Λ_c^+/D^0 ratio in p-Pb collisions
 - ➤ Radial-flow like effects or quark recombination

- Similar modification in Pb-Pb collisions, enhancement observed with centrality at intermediate p_T
- ☐ Similar trend at forward rapidity (LHCb) but lower in absolute value
 - Rapidity dependence?

ALICE, Phys. Rev. C 107 (2023) 064901 CMS, JHEP 01 (2024) 128

LHCB, JHEP06(2023)132, JHEP 02 (2019) 102

