Classical and Quantum Mechanics of Non-holonomic Constraints

W. A. Horowitz

University of Cape Town July 8, 2025

Based on:

A Rothkopf and WAH, arXiv:2409.11063

Introduction

 Recall Hamilton's Principle of Extremized Action

$$SS = 0,$$

$$S[q^{i}(t), q^{i}(t)] = \int_{t_{i}}^{t_{f}} dt L(q^{i}(t), q^{i}(t), t)$$

Euler-Lagrange Equations

 One may then derive the EL eqns for unconstrained motion:

$$\delta S = \int_{t_i}^{t_f} dt \frac{\partial}{\partial q_i} \delta q_i + \frac{\partial}{\partial \dot{q}_i} \delta \dot{q}_i$$

$$= \int_{t_i}^{t_f} dt \frac{\partial}{\partial q_i} \delta q_i + \frac{\partial}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial}{\partial \dot{q}_i} \delta \dot{q}_i$$

$$= \int_{t_i}^{t_f} dt \frac{\partial}{\partial q_i} \delta q_i + \frac{\partial}{\partial \dot{q}_i} \delta \dot{q}_i + \frac{\partial}{\partial \dot{q}_i} \delta \dot{q}_i$$

$$= \int_{t_i}^{t_f} dt \left[\frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial q_i} \right] \delta_{q_i} + \frac{\partial L}{\partial q_i} \delta_{q_i} \left[t_i \right]$$

Boundary Terms

- Under the assumption that the start and end points of the motion are fixed, then $\delta q^i(t_i) = \delta q^i(t_f) = 0$, and the boundary term vanishes
- We envision the paths as

Unconstrained Motion

- Variations δq(t) are independent and arbitrary
- Fundamental Theorem of the Calculus of Variations =>

Notice the crucial use of the "transposition rule"

Constrained Motion

Suppose we require that

- Examples:
 - Mass on the end of a rod
 - Bead on a rotating hoop
 - Rolling without slipping

Types of Constrained Motion

- Constraints are classified:
 - Holonomic: depends only on the coordinates
 - Non-holonomic: depends on coordinates and velocities
- Examples:
 - Mass on the end of a rod
 - Bead on a rotating hoop
 - Rolling without slipping

Holonomic

Non-holonomic

Holonomic Constraints

- Holonomic constraints are "easy"
 - System's motion is well understood
- One may solve by
 - 1) Use f(qⁱ,t) = 0 to solve for one qi in terms of the others
 - Treat remaining q's as independent and arbitrary, proceed as in the unconstrained case

Lagrange-d'Alembert Principle

- 2) Keep all q's, but modify Hamilton's
 Principle to the Lagrange-d'Alembert Principle
 - Action is extremized, but variations must satisfy the constraint

$$\delta S = \int_{t}^{t} dt \left[\frac{\partial}{\partial q_{i}} \delta q_{i} + \frac{\partial}{\partial q_{i}} \delta q_{i} \right] + \left(q_{i} + \delta q_{i}, k \right) = 0$$

Constrained Variations

 Think of a block on a wedge; variations can't push the block into or off of the wedge

Transposition Rule and IBP

 One can show that the transposition rule still holds for holonomic constraints

And thus

$$SS = \int_{t_i}^{t_f} dt \left[\frac{\partial L}{\partial z_i} - \frac{\partial L}{\partial t} \frac{\partial L}{\partial z_i} \right] S_{2i}$$

$$+ \left(q_i + \delta q_i, t \right) = 0$$

 Since the dqi are not all independent and arbitrary, we can't use the FTCV: progress is

difficult

11

Lagrange Multipliers

• 3) Since

$$\frac{\partial f}{\partial q^i} \delta_{q^i} = 0 \implies \lambda(t) \frac{\partial f}{\partial q^i} \left[q^i(t) \right] \delta_{q^i}(t) = 0$$

• We may then add to $\delta S = 0$:

$$SS = \int_{t}^{t} dt \left[\frac{\partial L}{\partial x_{i}} - \frac{\partial L}{\partial t} \frac{\partial L}{\partial x_{i}} + \lambda \frac{\partial L}{\partial x_{i}} \right] S_{2}^{i}$$

$$= C$$

$$f(q^{i} + \delta q^{i}, t) = 0$$

Independent and Dependent Variables

- Consider one q_D^α as dependent on the q_I^j
 independent coordinates
 - $-\delta q_D \alpha$ depend on δq_I^j
- λ(t) is independent and arbitrary
 - Choose $\lambda(t)$ such that

$$\frac{\partial L}{\partial x^{\alpha}} - \frac{J}{\partial t} \frac{\partial L}{\partial x^{\alpha}} + \lambda \frac{\partial L}{\partial x^{\alpha}} = 0$$

Apply FTCV

Then we have

$$SS = \int_{t_i}^{t_f} \int \frac{dL}{dt_i} - \frac{d}{dt} \frac{dL}{dt_i} + \lambda \frac{df}{dt_i} \int_{t_i}^{t_i} Sq^i = 0$$

A independent and arbitrary!

- and thus

$$\frac{\partial L}{\partial y_i} - \frac{1}{24} \frac{\partial L}{\partial y_i} + \lambda \frac{\partial L}{\partial y_i} = 0$$

Full Solution

Putting our two sets of equations together:

$$\frac{\partial L}{\partial x_i} - \frac{J}{\partial t} \frac{\partial L}{\partial x_i} + \lambda \frac{\partial L}{\partial x_i} = 0$$

We have solution for all coordinates i

Adjoined Lagrangian

• 4) One may directly adjoin

to our original Lagrangian, treat $\lambda(t)$ and all the qⁱ as independent and arbitrary, and use Hamilton's Principle

One finds same EoM for qⁱ, plus

Non-holonomic Constraints

- Hard
- Correct EoM derived in 2011 (!)

$$\frac{d}{dt} \frac{d}{d\dot{x}} - \frac{d}{d\dot{x}} = \lambda \frac{\partial q}{\partial \dot{q}}$$

Flannery, J Math Phys 52 (2011)

 Want to understand from a variational principle point of view

Obstructions

- Finding a variational principle is difficult because
 - 1) One *cannot* rely on the transposition rule

 – 2) Adjoining the Lagrangian with L mult's leads to spurious forces

$$\frac{d}{dt} \frac{dl}{di} - \frac{dl}{di} = \lambda \left(\frac{\partial g}{\partial g_i} - \frac{1}{dt} \frac{\partial g}{\partial g_i} \right) - \lambda \frac{\partial g}{\partial g_i}$$

18

Double the DoF

Consider the expectation value of an operator in QM

$$(3)(4) = (4(4)|\hat{O}(4)|4(4))$$

= $(4(4)|\hat{U}_{4}^{+}(4,4)|\hat{O}(4,4))$

Visualization:

Variation of Paths

• Consider a wavepacket of width σ_x for initial state. Then we have a path out $q_1(t)$ with variations $\delta q_1(t)$ and a path back $q_2(t)$ with variations $\delta q_2(t)$

Plus/minus Paths

 It's often useful to consider a change of variables

$$q_{+}(t) = \frac{1}{2}(q_{1}(t) + q_{2}(t))$$

 $q_{-}(t) = q_{1}(t) - q_{2}(t).$

- As hbar => 0 limit, $q_+(t)$ is the classical path and $q_-(t)$ are the quantum fluctuations

Action in Doubled DoF

One may consider an action from the path integral associated with

such that

Lagrange Multipliers Part II

 Since DoF are doubled, we can add Lagrange multipliers in new ways, e.g.:

$$\int_{t_{1}}^{t_{4}} (t | q_{i}(t |) = \int_{t_{1}}^{t_{4}} dt \left[\left[\left(q_{i}(t | q_{i}(t | t)) - \left[\left(q_{i}(t | q_{i}(t | t)) - \left[\left(q_{i}(t | q_{i}(t | t)) + A_{i}(t | q_{i}(t | q_{i}($$

– Apply Hamilton's Principle => correct EoM!

IP ...

Examples: Rolling without Slipping

Setup and constraints:

Rolling w/o Slipping Results

Novel action yields correct motion!

Rothkopf and WAH, arXiv:2409.11063

Inequality Constraints

 Inequality constraints, such as falling inside a drum, can also be handled:

Rothkopf and WAH, arXiv:2409.11063

- NB: path is globally determined
 - No need to locally find where particle collides with boundary

Dissipative Systems

 Novel action also handles dissipative systems

Rothkopf and WAH, arXiv:2409.11063

Cannot be formulated in a single path action principle

Conclusions and Outlook

- Found action principle for non-holonomic constraints
 - First time in 180 years of searching
- Doubled DoF can handle
 - Non-holonomic constraints (e.g. rolling w/o slipping)
 - Inequality constraints
 - Dissipative forces
- Future work:
 - Use our action in a path integral to compute quantum mechanics of non-holonomic constraints for the first time
 - Derive the action from first principles

