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Introduction

* Recall Hamilton’s Principle of Extremized
Action
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Euler-Lagrange Equations

* One may then derive the EL eqgns for
unconstrained motion:
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Boundary Terms

* Under the assumption that the start and
end points of the motion are fixed, then
5q'(t) = 89'(t)) = 0, and the boundary term
vanishes

* We envision the paths as
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Unconstrained Motion

 Variations 6q(t) are independent and
arbitrary

* Fundamental Theorem of the Calculus of
Variations =>
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* Notice the crucial use of the “transposition
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Constrained Motion

* Suppose we require that
(4,4 k) <0

 Examples:

— Mass on the end of a rod
— Bead on a rotating hoop
— Rolling without slipping

W 7/5/25 SAIP




Types of Constrained Motion

» Constraints are classified:
— Holonomic: depends only on the coordinates

— Non-holonomic: depends on coordinates and
velocities

« Examples:

— Mass on the end of a rod } |
_ Holonomic
— Bead on a rotating hoop

— Rolling without slipping - Non-holonomic
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Holonomic Constraints

* Holonomic constraints are “easy”
— System’s motion is well understood

* One may solve by

— 1) Use f(q',t) = 0 to solve for one qi in terms of
the others

* Treat remaining g’'s as independent and arbitrary,
proceed as in the unconstrained case
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Lagrange-d’'Alembert Principle

— 2) Keep all g’s, but modify Hamilton’s
Principle to the Lagrange-d’Alembert Principle

 Action is extremized, but variations must satisfy
the constraint
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Constrained Variations

* Think of a block on a wedge; variations
can't push the block into or off of the
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//jg : /\Q&V Dl
v °1
f‘\é;@ .

W 7/5/25 SAIP 10




Transposition Rule and IBP

* One can show that the transposition rule
still holds for holonomic constraints
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— Since the dqgi are not all independent and
arbitrary, we can’t use the FTCV: progress is
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Lagrange Multipliers
« 3) Since
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* WWe may then add to 6S = 0:
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Independent and Dependent Variables

» Consider one qp* as dependent on the g/
Independent coordinates

— dgpa depend on 8q;

* A(t) is iIndependent and arbitrary
— Choose A(t) such that
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Apply FTCV

* Then we have
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Full Solution

* Putting our two sets of equations together:

— We have solution for all coordinates |
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Adjoined Lagrangian

* 4) One may directly adjoin
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to our original Lagrangian, treat A(t) and all
the q' as independent and arbitrary, and
use Hamilton’s Principle

« One finds same EoM for @', plus
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Non-holonomic Constraints

» Hard
* Correct EoM derived in 2011 (1)
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Flannery, J Math Phys 52 (2011)

 \Want to understand from a variational
principle point of view
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Obstructions

* Finding a variational principle is difficult
because
— 1) One cannot rely on the transposition rule
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— 2) Adjoining the Lagrangian with L mult’s
leads to spurious forces
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Double the DoF

» Consider the expectation value of an
operator in QM
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* Visualization:
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Variation of Paths

» Consider a wavepacket of width o, for
initial state. Then we have a path out g,(t)
with variations 6q4(t) and a path back g,(t)

with variations 6q,(t)
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Plus/minus Paths

* |t's often useful to consider a change of
variables
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— As hbar => 0 limit, g,(t) is the classical path
and q.(t) are the quantum fluctuations
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Action in Doubled DoF

* One may consider an action from the path
integral associated with
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Lagrange Multipliers Part |

» Since DoF are doubled, we can add
Lagrange multipliers in new ways, e.g.:
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— Apply Hamilton’s Principle => correct EoM!
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Examples: Rolling without Slipping

« Setup and constraints:
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Rolling w/o Slipping Results

* Novel action yields correct motion!
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Inequality Constraints

 Inequality constraints, such as falling
iInside a drum, can also be handled:
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Rothkopf and WAH, arXiv:2409.11063

— NB: path is globally determined

* No need to locally find where particle collides with
boundary
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Dissipative Systems

* Novel action also handles dissipative
systems
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+ x(no friction) +++

O y(no friction) ++++ 0/, "ny
mem (O X(W/ friction) +++ ~Jg
w7 y(w/ friction) +++.

Rothkopf and WAH, arXiv:2409.11063

— Cannot be formulated in a single path action
principle
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Conclusions and Outlook

* Found action principle for non-holonomic
constraints

— First time in 180 years of searching
* Doubled DoF can handle
— Non-holonomic constraints (e.g. rolling w/o slipping)
— Inequality constraints
— Dissipative forces
* Future work:

— Use our action in a path integral to compute quantum
mechanics of non-holonomic constraints for the first
time

— Derive the action from first principles
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