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▶ Daubechies wavelet scaling functions have most of
the properties that are desired of a basis set to be
used for the simulation of isolated or inhomogeneous
systems such as molecules and materials.

▶ They are compactly supported, being non-zero only
within a finite interval. Making it well-suited for
approximating data with sharp discontinuities.

▶ Their orthogonality ensures that the basis set is
well-behaved and stable, leading to accurate results
in DFT calculations.

▶ Also they have the ability to accurately represent
polynomial functions, and their regularity or
smoothness make them a powerful and efficient
basis set for DFT calculations, enabling accurate and
computationally feasible simulations of electronic
structure.
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▶ The provision of a systematic and localized basis set
by wavelet scaling functions makes it crucial for
achieving both high accuracy and computational
efficiency, reducing computational cost.

▶ When the best wavelet scaling function adapted to
data is chosen, the data is sparsely represented.
This sparse coding makes wavelet scaling functions
an excellent tool in the field of data compression.

▶ Wavelet scaling could be used in other applied fields
of science such as in astronomy, acoustics, nuclear
engineering, sub-band coding, signal and image
processing, neurophysiology, magnetic resonance
imaging, speech discrimination, and optics. They can
also be used in fractals, turbulence,
earthquake-prediction, radar, human vision, and pure
mathematics applications such as solving partial
differential equations.
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▶ Scientists had wanted more appropriate functions
than the sines and cosines which comprise the
bases of Fourier analysis, to approximate fluctuating,
intermittent signals and sharp spikes.

▶ Because some of these other functions are non-local
and they are stretched to infinity. They lack merits in
approximating data with sharp discontinuities.

▶ Data sparsely represented needs an excellent tool
for its compression, and wavelet scaling are adapted
to such data.
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▶ Using maximally symmetric Daubechies wavelet
scaling function ϕ of order 16(8), as per figure below:

This function vanishes outside of [-7,8].



Solving the
one-dimensional

Schrödinger
equation using a

set of Daubechies
wavelet scaling

functions

Obiageli
Ezenwachukwu, M

Braun

Motivation of
Wavelet Scaling
functions

Problem statement

Understanding of
Wavelet Scaling
Functions

Harmonic
Oscillator
Results of Calculations of
the Harmonic Oscillator

Discussion and
conclusion

Future Research

Acknowledgment

▶ The Daubechies scaling basis function is defined as:

f h
i (x) =

1√
h
ϕ
(x

h
+

xmax

h
− i

)
(1)

▶ Calculations were done using Python, Numpy and
PyWavelets.

▶ For us to use such functions on a finite interval we
need to modify some of the basis functions, such that
they become periodic on −xmax to xmax .

▶ The overlap matrix

uij =

∫ xmax

−xmax

gi(x)gj(x)dx (2)

is mostly sparse. Evaluating the uij we use the
trapezoidal rule with ni = 15000 intervals for each
interval h after using cubic spline interpolation on the
Daubechies scaling functions. The ni is the number
of integration intervals.
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▶ The potential energy matrix

vij =

∫ xmax

−xmax

gi(x)x2gj(x)dx (3)

is evaluated in a similar way.

▶ The kinetic energy matrix

kij =

∫ xmax

−xmax

ǵi(x)ǵj(x)dx (4)

is evaluated by first calculating the derivative of the
respective basis functions.

▶ Thus we obtain the Hamiltonian matrix as

hij = kij + vij . (5)
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▶ The Schrödinger equation of one-dimensional
harmonic oscillator is given by;

−d2ψn(x)
dx2 + x2ψn(x) = Eψn(x) (6)

▶ Energy eigenvalues of the quantum harmonic
oscillator are

Ev = 2v + 1 (7)

▶ We are interested in the ground state energy which
is 1. Here we use the xmax = 6.
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▶ The ground state energy errors for the harmonic
oscillator are given in the table below.

N δE
6 0.00415612
12 6.54564790 × 10−6

18 4.90738339 × 10−8

24 1.15641696 × 10−9

30 6.16224849 × 10−11

36 9.40092448 × 10−12

▶ N stands for the number of intervals between zero
and xmax , we have a total 2N intervals. The δE
simply stands for the error of the ground state energy
i.e.E − 1

▶ The full calculation takes place on [−xmax , xmax ].
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▶ We can see that as the number of intervals
increased so δE decreased, converging towards 1,
the correct value for the ground state energy for
Harmonic oscillator.

▶ This shows that Daubechies wavelet scaling as basis
functions converge quickly.

▶ We see δE decreasing consistently with increasing
N.
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▶ In the figure below, log δE is plotted versus log N.
▶ The straight line is the least square fit.
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▶ We intend to study small molecules: N ≲ 10
▶ The Nodes are to be derived from molecular

information in .xyz files.
▶ Schrödinger-like equations are solved based on

Density Functional approach, and the code is under
development.
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Thank You!!!
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