

Contribution ID: 263

Type: Poster Presentation

The Evolution of the Infrared-Radio Correlation with Redshift and Stellar Mass for galaxies in the MIGHTEE COSMOS field.

We investigate the evolution of the infrared–radio correlation ($q_{\rm IR}$) as a function of redshift (z) and stellar mass (M_*) for star-forming galaxies (SFGs) in the COSMOS field, using MIGHTEE Early Science data. We use radio-detected galaxies with multi-wavelength counterparts to classify sources as radio-quiet AGN (RQ AGN), radio-loud AGN (RL AGN), and SFGs over the redshift range 0 < z < 6. We calibrate the star formation rate (SFR)–1.4 GHz radio luminosity ($L_{1.4~\rm GHz}$) relation for both SFGs and RQ AGN. Both populations exhibit a positive correlation between SFR and $L_{1.4~\rm GHz}$, and we find that RQ AGN have similar SFR– $L_{1.4~\rm GHz}$ calibrations as SFGs. We further examine the evolution of $q_{\rm IR}$ (infrared-radio luminosity ratio) with redshift in different M_* bins. For high-mass galaxies (M_* >10^{9.5} M), $q_{\rm IR}$ declines with increasing redshift and stellar mass due to enhanced magnetic fields in star-forming regions that elevated radio luminosities in massive star-forming galaxies.

Apply for student award at which level:

PhD

Consent on use of personal information: Abstract Submission

Yes, I ACCEPT

Primary author: Mrs KEKANA, Thando (University of Johannesburg)

Co-authors: Dr THORAT, Kshitij (University of Pretoria); Prof. RAZZAQUE, Soebur (University of Johannes-

burg); Dr KOLWA, Sthabile (University of South Africa)

Presenter: Mrs KEKANA, Thando (University of Johannesburg)

Session Classification: Poster Session

Track Classification: Track D1 - Astrophysics