Exploring ULXs as Short GRB Precursors

L. Nyadzani¹, S. Razzaque¹, and J.D. Finke²

University of Johannesburg, Department of Physics¹

U.S. Naval Research Laboratory²

11 July 2025

Outline

- Stellar evolution
- Research Objectives
- Method and ULX model
- Results
- Summary

Stellar Evolution

DCO formation channels:

What are ULXs

Ultra-Luminous X-ray sources (ULXs) are galactic point-like sources, exhibiting high X-ray luminosity ($L_x > 10^{39}$ erg/s) exceeding the Eddington limit of neutron stars or stellar-mass black holes (Fabbiano 1989).

- Early surveys identified 16 ULXs with $L_x > 10^{39}$ erg/s (Fabbiano 1989).
- Over 1800 ULXs identified so far (Walton et al. 2022).
- ULXs mainly in extragalactic regions, not in nuclei, are distinct from accreting supermassive black holes.

Research Objectives

- Simulate binary systems (using a population synthetic code)
- Predict DCO merger rates from ULX phase evolution.
- Predict SGRB rates from DNS that evolved through the ULX phase.

Methodology: COSMIC

COSMIC (Compact Object Synthesis and Monte Carlo Investigation Code) developed by Breivik et al. (2020):

- Population synthesis code used for simulating the evolution of binary systems.
- Combines theoretical models of stellar evolution, binary interactions, and compact object mergers.

Initial Set-up:

- Primary star mass (M_1) drawn from a Kroupa initial mass function (IMF) (Kroupa et al. 1993).
- Secondary star mass (M_2) drawn from a flat distribution of the binary mass ratio $(q = M_2/M_1)$.

Simulation Details:

- Simulated 2×10^6 binary systems at different metallicities (0.5% to 150% Z_{\odot}).
- Evolved binaries from ZAMS to X-ray binary phase and then to the formation of DCO.
- Allowed super-Eddington accretion up to 1000 times Eddington rate.

Disc Model

We adopt the SCAD model (Vinokurov et al. 2013).

$$T(r) = T_{\text{in}} \begin{cases} (r \sin \theta_f)^{-1/2}, & 1 \le r \le r_{\text{sp}} \\ \left[\frac{f_{\text{out}}}{\sin \theta_f} (1 + \ln \dot{m}) \right]^{1/4} r^{-1/2}, & r_{\text{sp}} \le r \le r_{\text{ph}} \end{cases}$$

- $T_{\rm in}^4 = \frac{L_{\rm Edd} \sin(\theta_t)}{4\pi\sigma R_{\rm in}^2}$, $R_{\rm in} = 3R_{\rm Sch}$ and σ is the Stefan-Boltzmann constant.
- $\theta_f = 45^{\circ}$ is the funnel angle.
- $f_{\text{out}} = 0.03$ is the fraction of bolometric flux thermalised in the disc.
- $\dot{m} = \dot{M}/\dot{M}_{\rm Edd}$.

$$L_{
u} = 2\pi R_{
m in}^2 \int_1^{r_{
m ph}} B_{
u}(T(r)) \, r \, dr \, .$$

ULX population: $L_{\rm X} > 1.26 M_{\rm c} \times 10^{38}$ erg/s using 0.2-12 keV band.

Results: ULX Phase

Metal-poor massive stars are more likely to undergo direct collapse into BHs.

The power-law index α varies with metallicity: Low-metallicity environments produce more high-luminosity ULXs.

Results: More on ULX Properties

A&A, 695, A8 (2025) https://doi.org/10.1051/0004-6361/202449208 © The Authors 2025

Astronomy Astrophysics

A synthetic population of ultra-luminous X-ray sources Optical—X-ray correlation

Lutendo Nyadzani^{1,*}, Soebur Razzaque^{1,2,3,*}, and Justin D. Finke^{4,*}

- Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006. South Africa
- ² Department of Physics, The George Washington University, Washington, DC 20052, USA
- ³ National Institute for Theoretical and Computational Sciences (NITheCS), Private Bag X1, Matieland, South Africa
- ⁴ U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Ave. SW, Washington, DC 20375-5352, USA

Received 11 January 2024 / Accepted 21 January 2025

ABSTRACT

This paper presents an analysis of the predicted optical-to-X-ray spectral index (α_m) within the context of ultra-luminous X-ray sources (ULXs) associated with stellar-mass black holes (BHs) and neutron stars (NSs). We used the population synthesis code COS-MIC to simulate the evolution of binary systems and investigate the relationship between ultraviolet (UV) and X-ray emission during the ULX phase, namely the α_m relation. Furthermore, we investigated the impact of metallicity on α_m values. Nostly it predicts a significant anti-correlation between α_m and UV luminosity $(L_{\rm UV})$, consistent with observations. The slope of this relationship varies with metallicity for black hole ULXs (BH-ULXs). The neutron star ULX (NS-ULX) population shows a relatively consistent slope around -0.33 across metallicities, with minor variations. The number of ULXs decreases with increasing metallicity, consistent slope around -0.33 across metallicities, with minor variations. The number of ULXs decreases with increasing metallicity, consistent with observational data. The X-ray luminosity function (XLT) shows a slight variation in its slope with metallicity, consistent with the NLF and α_m , particularly at high accretion rates, where the emission is focused into narrower cones. We found that we mission in ULXs is predominantly disc-dominated, which is the likely origin of the $\alpha_{\rm inc}$ relation, with the percentage of disc-dominated ULXs increasing as metallicity is excellent in the context of the context

Key words. binaries: general

Results: Post-ULX Compact Binary Properties

Higher metallicity increases stellar wind mass loss, reducing the number of massive stars and leading to lower DCO formation rates.

Less than 10% of ULXs evolve to mDCOs, but a striking 70 – 97% of mDCOs trace their evolutionary history through a ULX phase.

Results: GRB rate Predictions

$$\mathcal{R}_{\text{SGRB}} = \int f_{\text{b}}(\theta_{\text{jet}}) P(\theta_{\text{jet}}) d\theta_{\text{jet}} \times \left(f_{\text{jet,DNS}} \mathcal{R}_{\text{DNS}} + f_{\text{jet,BHNS}} \mathcal{R}_{\text{BHNS}} \right)$$

- $P(\theta_{iet})$ is the log-normal probability density function.
- $f_{\text{jet,DNS}} = \frac{N_{\text{DNS}->BH}}{N_{\text{DNS,total}}}$
- $f_{\text{jet,BHNS}} = \frac{N_{\text{BHNS}}:(q>0.2)}{N_{\text{BHNS,total}}}$
- $f_b(\theta_{jet}) = 1 \cos \theta_{jet}$.
- R_{BHNS} and R_{DNS} are BHNS and DNS merger rates taking into account the SFR and metallicity evolution with read-shift as outlined in Bavera et al. (2020)

Results: GRB rate Predictions

f _{jet,BHNS}	f _{jet,DNS}	- 3
0.726	1.000	- 6
0.803	1.000	Š
0.906	0.970	
0.471	1.000	
0.449	0.972	
0.408	1.000	
0.279	1.000	
0.429	1.000	
0.391	1.000	
	0.726 0.803 0.906 0.471 0.449 0.408 0.279 0.429	0.726 1.000 0.803 1.000 0.906 0.970 0.471 1.000 0.449 0.972 0.408 1.000 0.279 1.000 0.429 1.000

0.2

0.4

0.8

0.6

Metallicity [Z/Z₀]

1.0

Torus Mass and GRB Energy from DNS Mergers

1. Torus Mass Estimation:

$$M_{\text{torus}} = [c_1(1-q) + c_2][c_3(1+q) - M_{\text{tot}}/M_{\text{max}}]$$

- $q = M_2/M_1 \le 1$ (mass ratio)
- $M_{\text{tot}} = M_1 + M_2$ (total mass)
- $M_{\rm max}$ = maximum non-rotating NS mass (2.2 M_{\odot})
- $c_1 = 2.974$, $c_2 = 0.11851$, $c_3 = 1.1193$

(Rezzolla et al. 2010) updated by Giacomazzo et al. (2013)

2. GRB Energy from the Torus Mass:

$$E_{\gamma,iso} = \epsilon_{jet} \cdot \epsilon_{\gamma} \cdot M_{torus} \cdot c^2$$

Assumptions:

- $\epsilon_{\rm jet}$: Torus mass into jet energy efficiency (10%)
- \bullet ϵ_{γ} : jet energy into gamma rays efficiency (50%)

Why do this: In COSMIC $M_{\rm f} = M_1 + M_2$

Results: Torus mass

Results: Gamma-Ray Energy Distribution

• Simulated populations show a similar energy range.

Summary and Limitations

Summary:

- 70-97 % of mDCO comes from the ULX phase, but only 10-20 % of mDNS comes from the ULX phase.
- SGRB metallicity distribution is comparable to the observed data.
- Gamma ray energy range is slightly higher than the observed range.

Limitations:

- Assumption 1: $f_{\text{jet,DNS}} = \frac{N_{\text{DNS}\rightarrow \text{BH}}}{N_{\text{DNS,total}}}$
 - Jet launching is expected when the remnant mass satisfies $M_{\rm rem} \gtrsim 1.2\,M_{\rm TOV}$ > hypermassive NS, collapsing to a BH after a short delay.

Summary and Limitations

Limitations:

- Assumption 2: No condition on magnetic filed.
 - Initial magnetic filed $\sim 10^{12}$ G to produce poloidal filed of $\sim 10^{15}$ G (Rezzolla et al. 2010).
 - All our systems have $B < 10^{12}$ G

References

- Kroupa, P., Tout, C. A., & Gilmore, G. 1993, , 262, 545
- Vinokurov, A., Fabrika, S., & Atapin, K. 2013, Astrophys. Bull., 68, 139
- Fabbiano, G., Kim, D.-W., & Trinchieri, G. 1989, , 347, 127
- Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D., & Font, J. A. 2010, Class. Quantum Grav., 27, 114105
- Bavera, S. S., Fragos, T., Qin, Y., Zapartas, E., Neijssel, C. J., Mandel, I., Batta, A., Gaebel, S. M., Kimball, C., & Stevenson, S. 2020, , 635, A97
- Giacomazzo, B., Perna, R., Rezzolla, L., Troja, E., & Lazzati, D. 2013, , 762, L18
- Breivik, K., Rodriguez, C. L., Larson, S. L., & Kalogera, V. 2020, , 247, 24
- Fong, W., Berger, E., Margutti, R., & Zauderer, B. A. 2015, , 815, 102

Thank You!

