

Constraints on Cosmological Parameters Using a Large Sample of Gamma-Ray Bursts with their redshift derived by Machine Learning

Tamador Aldowma and Soebur Razzaque

Outline

Introduction

Phenomenological Correlations

Machine Learning Models

Estimations of GRB Redshift

Preliminary results:

Constraints on Cosmological Parameters

Summary

Introduction

- ❖ Gamma-ray Bursts (GRBs) are the most powerful explosions in electromagnetic wavebands ever discovered.
- * Emitting in high energy range (keV to GeV) in gamma-ray within durations less than 1 second to few minutes.
- riangle Detected at high redshift up to \sim 9.4.
- GRBs can be visible at a very large distance, because of their high luminosities ($L_{iso} \sim 10^{52} \ erg \ s^{-1}$).
- Are extremely bright and release an enormous isotropic equivalent radiated energy $(E_{iso} \sim 10^{54} \ erg)$ in a few hundreds of seconds.

They have the potential to be used as cosmological standard candles.

Introduction

https://gammaray.nsstc.nasa.gov/batse/grb/duration/

Credit: NASA and A. Feild (STScI)

Introduction

High Energy Stereoscopic System (H.E.S.S)

Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC)

Phenomenological Correlations

Amati (2002): (LGRBs -
$$*T_{90} > 2 s$$
)

$$\frac{E_{iso}}{10^{52} erg} = 10^k \left(\frac{E_{i,peak}}{E_o keV}\right)^m$$

$$E_{iso} = rac{4\pi d_L^2}{1+z} \, rac{S_{bolo}}{1+z}$$
 , $E_{i,peak} = E_p(1+z)$

$$S_{bolo}(E_1, E_2, z) = T_{90} \int_{E_1(1+z)}^{E_2(1+z)} EN(E) dE$$

$$\frac{L_{iso}}{10^{51}} = 10^k \left(\frac{E_{i,peak}}{E_o \ keV}\right)^m$$

$$L_{iso} = 4\pi d_L^2 P_{bolo}$$

$$P_{bolo}(E_1, E_2, z) = \int_{E_1/((1+z)}^{E_2/(1+z)} EN(E) dE$$

Phenomenological Correlations

$$d_L = (1+z)\frac{c}{H_o} \int_0^z \frac{dz}{\sqrt{(1-\Omega_\Lambda)(1+z)^3 + \Omega_\Lambda}} \qquad H_o = 67.3 \, km \, s^{-1} \, Mpc^{-1} \, and \, \Omega_\Lambda = 0.685 \, (Planck Collaboration et al., 2018)$$
From the H_o and Ω_Λ if one can predict (E_{iso}, L_{iso}) by measuring the peak of spectra then it possible to use GRBs as standard candles because of this d_L .

Redshift

- The redshift of the GRBs can be obtained from the absorption or emission lines.
- GRB 970508 from the few absorption lines, the redshift was determined to be z = 0.8 Frail et al., 1997.
- Swift satellite is well studied the localization of GRBs, enabling Swift follow-up observations and facilitating timely redshift measurements Gehrels et al., 2009.
- From photometric and spectroscope, many GRBs have been identified and can be found in many GRBs catalogs such as Fermi-GBM von Kienlin et al., 2020, and Kouns-Wind Tsvetkova et al., 2021.
- The farthest GRB identified is GRB 090429B $z \approx 9.4$ Cucchiara et al., 2011.

Machine Learning Models

Estimations of GRB Redshift

SuperLearner:

An ensemble learning technique that improves predictive accuracy by combining the outputs of multiple statistical models.

Trains various **supervised models**: such as generalized additive models and random forests

Observed redshifts with predicted redshifts for 103 GRBs

Dainotti et al. 2024

- A sample of Swift GRBs based on their observed prompt and afterglow.

Dainotti et al. 2024

Machine Learning Models

- We used data from Fermi Gamma-ray Monitor (Fermi-GBM) von Kienlin et al., 2020 catalogue, 128 GRBs (2008-2018) with known redshift.
- Kouns-Wind Tsvetkova et al., 2021 catalogue, 338 GRBs (2005-2018) with known redshift.

Aldowma, T., and Razzaque, S., MNRAS, 2024

Bolometric	Peak Flux	Fluence
Band Model	$\alpha, \beta, E_p, P_{\text{bolo}}$	$\alpha, \beta, E_p, S_{\text{bolo}}$
Comptonized Model	$\alpha, E_p, P_{\text{bolo}}$	$\alpha, E_p, S_{\text{bolo}}$

We excluded:

- All SGRBs.
- GRBs with errors on spectral parameters exceeding 100% and those without *Ep* values across all spectral models were excluded.
- GRBs best-fitted with the Band model showing $\beta \ge -2$, indicating no peak, were also excluded.
- These applied to both GBM and KW data, regardless of redshift availability.

Band : Band D. et al., 1993. with indices α , β , and spectral peak energy E_p in keV.

$$N_{Band}(E) = A_{Band} \begin{cases} \left(\frac{E}{100 \text{ keV}}\right)^{\alpha} exp\left[-\frac{E(2+\alpha)}{E_p}\right] & \text{if } E \leq E_b \\ \left(\frac{E}{100 \text{ keV}}\right)^{\beta} exp(\beta-\alpha) \left[-\frac{E_p}{100 \text{ keV}} \frac{\alpha-\beta}{2+\alpha}\right]^{\alpha-\beta} & \text{if } E > E_b, \end{cases}$$

Comptonized: Steiner J. F. et al., 2009.

The photon index γ , and the peak energy E_p .

$$N_{Comp}(E) = A_{Comp} \left(\frac{E}{100 \text{ keV}}\right)^{\gamma} \exp \left[-(2+\gamma)\frac{E}{E_p}\right]$$

Machine Learning Models

Ensemble Stacking

Aldowma, T., and Razzaque, S., MNRAS, 2024

Estimations of GRB Redshift

* Results from ensemble model with true redshift

GBM data	Train	Test	
	R^2 - MAE	R^2 - MAE	
Band fluence	0.812 - 0.383	0.724 - 0.555	
Band flux	0.819 - 0.450	0.798 - 0.290	
Comp fluence	0.827 - 0.439	0.801 - 0.392	
Comp flux	0.823 - 0.384	0.812 - 0.437	
Band fluence and flux	0.844 - 0.370	0.821 - 0.498	
Comp fluence and flux	0.831 - 0.424	0.823 - 0.343	
KW-GBM data	Train	Test	
	R^2 - MAE	R^2 - MAE	
Band fluence	0.858 - 0.431	0.838 - 0.433	
Band flux	0.846 - 0.430	0.839 - 0.413	
Comp fluence	0.857 - 0.409	0.836 - 0.433	
Comp flux	0.860 - 0.337	0.852 - 0.364	
Band fluence and flux	0.851 - 0.418	0.838 - 0.406	
Comp fluence and flux	0.861 - 0.369	0.860 - 0.397	
KW data	Train	Test	
	R^2 - MAE	R^2 - MAE	
Band fluence	0.838 - 0.543	0.804 - 0.615	
Band flux	0.827 - 0.503	0.766 - 0.457	
Comp fluence	0.826 - 0.480	0.810 - 0.509	
Comp flux	0.842 - 0.441	0.831 - 0.361	
Band fluence and flux	0.846 - 0.463	0.812 - 0.551	
Comp fluence and flux	0.838 - 0.406	0.829 - 0.512	

Predicted redshift from the ensemble models (DNNs + Random Forest) vs. true redshift for train and test samples from the combined KW-GBM data with known redshift. The regression lines are shown with 95% CL.

Aldowma, T., and Razzaque, S., MNRAS, 2024

Estimations of GRB Redshift

Pseudo-redshifts compare with the samples of GRBs with true redshifts

GBM data	p-value
Band fluence	0.1532
Band flux	0.0681
Comp fluence	0.1531
Comp flux	0.5713
Band fluence and flux	0.1532
Comp fluence and flux	0.1531
KW-GBM data	p-value
Band fluence	0.0681
Band flux	0.0681
Comp fluence	0.0948
Comp flux	0.8319
Band fluence and flux	0.5713
Comp fluence and flux	0.1745

Kolmogorov-Smirnov (KS) *Hodges, 1958* test between the GRB samples with measured redshift and estimated pseudo redshift for GBM data without measured redshift.

Estimations of GRB Redshift

Results of the Amati (Amati et al., 2002) and Yonetoku (Yonetoku et al., 2004) correlation fits applied to the KW-GBM samples of GRBs with true redshift and GBM sample of GRBs with pseudo redshift. To see if may help to constrain the cosmological parameters.

$$x = \log_{10}(\frac{E_{i,p}}{E_o}) , y = \log_{10}\left(\frac{E_{iso}}{erg/s}\right)$$
 To get the error in y we followed:
$$\sigma_y = \sqrt{\sigma_k^2 + m^2\sigma_x^2 + \sigma_m^2 + \sigma_{ext}^2}$$

Max-likelihood function used to determine the parameters (k, m, σ_{ext}) $L(m, k, \sigma_{ext})$ $= \frac{1}{2} \sum_{i=1}^{N} \ln(\sigma_{ext}^{2} + \sigma_{yi} + m^{2}\sigma_{xi} + \frac{1}{2} \sum_{i=1}^{N} \frac{(y_{i} - mx_{i} - k)^{2}}{(\sigma_{ext}^{2} + \sigma_{yi} + m^{2}\sigma_{xi})}$

Amati correlation

Yonetoku correlation

The ensemble model used for predicting pseudo redshift is "Comp flux" derived from KW-GBM true-redshift data (KS-test p-value: 0.8319).

Constraints on cosmological parameters

❖ Based on the best fit from the p-value shown in "Comp-flux," we have published pseudo-redshift dataset: is available on the Zenodo website.

https://doi.org/10.5281/zenodo.13695954

• Once the parameters are obtained by fitting the linearized Yonetoku relation, we can use the GBM data with pseudo-redshift to estimate the cosmological parameters.

Preliminary results Constraints on cosmological parameters

❖ GBM-GRB data:

True redshift: 116 GRBs, 0.0 < z < 8.2Pseudo redshift: 1576 GRBs, 0.6 < z < 6.3

❖ SNe Ia data:

SNe U2.1 Suzuki et al. (2012): 580, 0.0 < z < 1.4Dark Energy Survey (DES) Abbottet al. 2019: 207, 0.02 < z < 0.85

 \clubsuit Using the MCMC method for Fermi GRB samples with true and pseudo-redshift. The parameters k, and m, represent the phenomenological parameters of the Yonetoku relation.

$$\chi^{2}(H_{0}, \Omega_{\Lambda}, k, m) = \sum_{i=1}^{N} \left[\frac{\mu^{obs}(z_{i}, k, m) - \mu^{th}(z_{i}, H_{0}, \Omega_{\Lambda}, k, m)}{\sigma_{\mu}^{2}(z_{i})} \right]^{2} + \left(\frac{k - k'}{\sigma_{k}} \right)^{2} + \left(\frac{m - m'}{\sigma_{m}} \right)^{2}$$

Preliminary results Constraints on cosmological parameters

The Distance Modulus given as:

$$\mu = 5\log\frac{d_l}{Mpc} + 25$$

$$\mu(z) = \frac{5}{2} \log_{10} \left[\frac{1}{4\pi P_{bolo}} \left(\frac{E_{i,p}}{E_0} \right)^m \right] + \frac{5}{2} (k+51) - 5 \log_{10} (1 MPC) + 25$$

The uncertainty in Distance Modulus:

$$\sigma_{\mu(z)} = \frac{5}{2 \ln 10} \left[\left(\frac{\sigma_{p_{bolo}}}{P_{bolo}} \right)^2 + \left(\frac{m \sigma_{E_i, p}}{E_{i, p}} \right)^2 \right]^{1/2}$$

Preliminary results Constraints on cosmological parameters

Summary

- We used a large sample of pseudo-redshifts predicted by our machine learning model, which is based on the Yonetoku correlation. This allowed us to explore how large number of GRBs can help constrain cosmological parameters.
- \circ Specifically, we fit the Yonetoku parameters (k, m) simultaneously with the cosmological parameters (H_0, Ω_{Λ}) .
- Our pseudo-redshift sample spans a wide redshift range from z = 0.6 to 6.3. To improve constraints at lower redshifts, we also included GRBs with known redshifts and combined them with SNe Ia data from Suzuki et al. (2012) and the Dark Energy Survey (DES).
- We compared our best-fit values of H_0 , Ω_{Λ} with results from other major studied:
 - Our H_0 value higher than Planck 2018, but lower than Riess 2022.
 - For Ω_{Λ} the all results are consistent within uncertainties.

Source	H ₀ (km/s/Mpc)	Ω_{Λ}	Data	References
GBM pseudo+true z	69.88 ± 0.44	0.72 ± 0.02	GRB + SNe	-
GBM true z	69.86 ± 0.43	0.72 ± 0.02	GRB + SNe	-
WMAP 9	69.3 ± 0.8	0.721 ± 0.015	CMB	Bennett et al. (2013)
F10 + SNe	70 ± 0.6	0.72 ± 0.03	GRB + SNe	Dirirsa et al. (2019)
F10 W2016 + SNe	70 ± 0.5	0.72 ± 0.03	GRB + SNe	Dirirsa et al. (2019)
Planck 2018	67.4 ± 0.5	0.684 ± 0.0073	CMB	Planck Collaboration et al. (2020)
SDSS/BAO+SNe	68.5 ± 1.0	0.70 ± 0.02	BAO + SNe	Alam et al. (2021)
Riess 2022	73.04 ± 1.04	~ 0.70	Cepheids + SNe	Riess et al. (2022)
Cosmic Chronometers	69.0 ± 1.2	0.70 ± 0.02	Galaxy ages	Moresco (2024)

Thank you

Our Future. Reimagined.