SAIP2025

Contribution ID: 144

Type: Oral Presentation

Structural and Optical Investigations of Tm3+/Yb3+ Doped Yttrium Pyrogermanate for Blue and NIR Upconversion

Tuesday 8 July 2025 12:10 (20 minutes)

The rare-earth germanates has attracted significant attention due to their remarkable thermal stability, low phonon energy, and structural flexibility, making them promising hosts for rare-earth ion doping in photonic and optoelectronic applications. Yttrium pyrogermanate (Y₂Ge₂O₇) phosphors were synthesized via the solid-state reaction method and doped with Tm³⁺ and Yb³⁺ ions to investigate their structural and optical properties for potential upconversion (UC) applications. The focus was on evaluating how co-doping with Yb³⁺ enhances the blue/NIR emission of Tm³⁺ under near-infrared 980 nm excitation.

Powder X-ray diffraction confirmed the formation of the tetragonal P4₁2₁2 phase for both undoped and doped samples, with no secondary phases detected. Field emission scanning electron microscopy revealed irregularly shaped particles with average grain sizes of around 1 μ m, forming agglomerated clusters typical of solid-state reaction prepared materials. The diffuse reflectance revealed absorption bands around 452 nm (¹H₆→¹G₄), 684 nm

 $(\sup 3</\sup H< sub 3</sup H< sub 3+</sup H</sub 3+</sup H< sub 3+</sup H</sub 3+</sup H</sub 3+</sub 3+</su$

The photoluminescence measurements excited at 355 nm exhibited characteristic blue emission at ~453 nm (¹D₂ \rightarrow ³F₄) and weaker red and NIR bands at 650 nm (¹G₄ \rightarrow ³F₄) and 792 nm (³H₄ \rightarrow ³F₄) and 792 nm (³H₄ \rightarrow ³H₆) of Tm³⁺G₄ \rightarrow ³H₆) and 792 nm (³H₆) and a strong NIR emission at ~475 nm(¹G₄ \rightarrow ³H₆) and a strong NIR emission at ~797 nm (³H₄ \rightarrow ³H₆). Notably, co-doping with 2% Yb³⁺ enhanced the UC emission intensity considerably compared to the singly doped sample, confirming efficient energy transfer from Yb³⁺ to Tm³⁺ ions. This enhancement is attributed to two-photon and three-photon energy transfer upconversion (ETU) mechanisms responsible for NIR and blue emissions, respectively, with Yb³⁺ ions acting as effective sensitizer. These findings demonstrate the potential of rare-earth doped pyrogermanate phosphors as promising candidates for UC-based applications.

Apply for student award at which level:

PhD

Consent on use of personal information: Abstract Submission

Yes, I ACCEPT

Primary author: Dr BASINA, VEERA NAVEEN KUMAR (UNIVERSITY OF THE FREE STATE)
Co-author: Prof. KROON, R.E
Presenter: Dr BASINA, VEERA NAVEEN KUMAR (UNIVERSITY OF THE FREE STATE)
Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials