Testing f (Q) gravity as a solution for H_0 Tension

D. Mithi¹, A. Abebe^{1,2}, and S. Sahlu^{1,3}

¹Centre for Space Research, North-West University, Potchefstroom 2520, South Africa

² National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
³ Department of Physics, Wolkite University, Wolkite, Ethiopia

69th Annual Conference of the South African Institute of Physics (SAIP2025)

Table of Contents

Introduction

2 Modified Theory of Gravity

Observational Consistency Check

General Relativity (GR)

- GR: The standard theory of gravity—geometric property of four-dimensional spacetime (Einstein 1915).
- $S_{EH}=rac{1}{2\kappa}\int\left[R+2\kappa\mathcal{L}_{M}
 ight]\sqrt{-g}\,d^{4}x$, where $\kappa=rac{8\pi G}{c^{4}}$
- $R_{\mu\nu}-rac{1}{2}Rg_{\mu\nu}=\kappa T_{\mu\nu}$, where $T_{\mu\nu}=-rac{2}{\sqrt{-g}}rac{\delta(\sqrt{-g}\mathcal{L}_m)}{\delta g^{\mu\nu}}$

Successes

- Describes gravitational interactions across a wide range of scales.
- Predicts expansion and structure formation.

Friedmann and Raychaudhuri Equations

- perfect fluid $T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + pg_{\mu\nu}$
- FLRW metric $ds^2 = -dt^2 + a^2(t) \left[dr^2 + r^2(d\theta^2 + \sin^2\theta \, d\phi^2) \right]$
- $8\pi G = c^4 = 1$

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{\rho}{3}$$
 and $\frac{\ddot{a}}{a} = -\frac{1}{6}(\rho + 3P)$

Shortcomings and ΛCDM

Shortcomings

- Late-time accelerated expansion (SNIa)
- Early structure formation (high-redshift galaxies)

ACDM: Standard Cosmological Model

•
$$S_{EH} = \frac{1}{2} \int \left[(R - 2\Lambda) + \mathcal{L}_{M} \right] \sqrt{-g} d^{4}x$$

$$\bullet R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$$

Friedmann Equations with Λ

- $H^2 = \frac{1}{3}\rho + \frac{\Lambda}{3}$
- $\bullet \ \ddot{\frac{a}{a}} = -\frac{1}{6}(\rho + 3P) + \frac{\Lambda}{3}$

ACDM Problems and Solutions

ACDM Problems

- Fine-tuning: $\rho_{\rm vac}\gtrsim 10^{21}\rho_{\Lambda}$
- Coincidence problem: $\rho_m \sim \rho_\Lambda$ today
- Unknown nature of dark sector
- H_0 tension: 67.4 \pm 0.5 vs 73.04 \pm 1.04 (5 σ)
- S_8 tension: 0.831 ± 0.013 vs $0.766^{+0.020}_{-0.014}$ (3.1 σ)

Possible Solutions

- Dynamical dark energy ($\rho_{DE} = \alpha H + \beta H^2$)
- Interacting dark sector fluids ($Q=3b^2H
 ho_m^\delta
 ho_{DE}^\gamma
 ho_{tot}^\sigma$)
- Modified gravity: $S = \frac{1}{2} \int [f(Q) + 2\mathcal{L}_M] \sqrt{-g} d^4x$

Table of Contents

Introduction

2 Modified Theory of Gravity

Observational Consistency Check

f(Q) Cosmology

- Based on symmetric teleparallel gravity (curvature and torsion vanish)
- Gravity described via nonmetricity tensor $Q_{\alpha\mu\nu}=\nabla_{\alpha}g_{\mu\nu}\Rightarrow Q$ (nonmetricity scalar) constructed to reproduce GR when f(Q)=Q
- useful for modeling (dark enrgy, late-time acceleration, and early universe inflation in some models)
- Vectors change their length and angle under parallel transport

2nd Order Field Equations

$$\frac{2}{\sqrt{-g}}\nabla_{\alpha}\left(\sqrt{-g}f_{Q}P^{\alpha}_{\ \mu\nu}\right) - \frac{1}{2}g_{\mu\nu}f - f_{Q}\left(P_{\mu\alpha\beta}Q_{\nu}^{\ \alpha\beta} - 2Q_{\alpha\beta\mu}P^{\alpha\beta}_{\ \nu}\right) = T_{\mu\nu}$$

Definitions

- $Q = -Q_{\alpha\mu\nu}P^{\alpha\mu\nu}$ (nonmetricity scalar)
- $P^{lpha}_{\mu
 u}=rac{1}{4}\left(-Q^{lpha}_{\mu
 u}+2Q^{}_{\left(\mu
 u
 ight)}-Q^{lpha}g_{\mu
 u}- ilde{Q}^{lpha}g_{\mu
 u}
 ight)$ superpotential
- $\bullet \ \ Q_{\alpha}={Q_{\alpha}}^{\mu}_{\ \mu}, \ \tilde{Q}_{\alpha}={Q_{\mu}}^{\mu}_{\ \alpha}$

f(Q) Friedmann Equations

- $6H^2f_Q \frac{1}{2}f = \rho$
- $(12H^2f_{QQ} + f_Q)\dot{H} = -\frac{1}{2}(\rho + P)$
- $Q = 6H^2$

Power-law Model: $f(Q) = \alpha + \beta Q^n$

Features

- Solved f(Q) Friedmann Equations numerically and fit it to Pantheon SNIa and OHD data
- match GR when $\alpha = 0$ and $\beta = n = 1$
- match Λ *CDM* when $\alpha = -2\Lambda$ and $\beta = n = 1$
- $\dot{H} H(1+z)H'$
- $\rho_m = 3H_0^2 \Omega_m$
- $\rho_{\alpha} = 3H_0^2\Omega_{\alpha}$

$H(z) \rho = \rho_m, P = 0$

- ΛCDM : $H(z) = H_0 \sqrt{\Omega_{m0}(1+z)^3 + (1-\Omega_{m0})}$
- $f(Q) = \alpha + \beta Q^n : H(z) = \left[\frac{\Omega_{m0}(1+z)^3 + \frac{\Omega_{cc}}{2}}{(2-\frac{1}{n})} \right]^{\frac{1}{2n}}$

Table of Contents

Introduction

2 Modified Theory of Gravity

3 Observational Consistency Check

48.48.45.45. 5.000

MCMC Simulation Free Parameters Constraint

ЛС DМ					
	BAO+CC				
$\Omega_{m,0}$	$0.296^{+0.014}_{-0.014}$				
H_0	$69.230^{+1.713}_{-1.748}$				
r_d	$147.113^{+3.537}_{-3.393}$				
Model I					
$\Omega_{m,0}$	$0.306^{+0.144}_{-0.107}$				
Ω_{lpha}	$1.410^{+0.409}_{-0.480}$				
n	$1.016^{+0.064}_{-0.062}$				
H_0	$68.170^{+15.638}_{-8.194}$				
r_d	$147.262^{+3.504}_{-3.366}$				

Frame Title

AIC Interpretation (Burnham & Anderson Criterion):

- \triangle AIC \leq 2: Substantial support for the model.
- $4 \le \Delta AIC \le 7$: Considerably less support for the model.
- Δ AIC > 10: Strong evidence against the model.

BIC Interpretation (Jeffreys' Scale):

- Δ BIC \leq 2: Weak evidence against the model.
- 2 < Δ BIC \leq 6: Positive evidence against the model.
- $6 < \Delta BIC \le 10$: Strong evidence against the model.
- Δ BIC > 10: Very strong evidence against the model.

Comparison of Statistical Results for Models: ACDM vs Model 1

Model	Obs.	Log-Likelihood	$ \chi^2 $	$\chi^2_{\rm red}$	AIC	BIC	ΔΑΙС	ΔВІС
ΛCDM	BAO+CC		27.4481	0.7038	35.448	42.493	0.000	0.000
Model 1	BAO+CC	-21.4572	42.9145	1.1293	52.914	61.720	17.466	19.228

Statistical analysis

• $\chi^2_{\rm red}$ Diagnostics:

- The reduced chi-squared is above 1, but still within an acceptable range.
- This suggests a reasonable fit to the data.
- However, there might be room for improvement in the model or data uncertainties.

• AIC Interpretation:

• Δ AIC indicates strong evidence against the model.

• BIC Interpretation:

• Δ BIC also indicates strong evidence against the model.

Unconstrained Conclusion

- Utilise early universe measurements to constrain the model.
- Perform more extensive tests with large-scale structure formation.
- tests with structure formation and growth rate in future work as an additional probe.

Centre for Space Research

Some of the References

- [1] Salvatore Capozziello and Rocco D'Agostino. "Model-independent reconstruction of f(Q) non-metric gravity". In: *Physics Letters B* 832, 137229 (Sept. 2022), p. 137229. DOI: 10.1016/j.physletb.2022.137229.
- [2] Fotios K. Anagnostopoulos, Spyros Basilakos, and Emmanuel N. Saridakis. "First evidence that non-metricity f(Q) gravity could challenge ΛCDM". In: *Physics Letters B* 822, 136634 (Nov. 2021), p. 136634. DOI: 10.1016/j.physletb.2021.136634.
- [3] Shambel Sahlu and Amare Abebe. "Constraining the modified symmetric teleparallel gravity using cosmological data". In: *arXiv e-prints*, arXiv:2412.20831 (Dec. 2024), arXiv:2412.20831. DOI: 10.48550/arXiv.2412.20831.
- [4] José Antonio Nájera, Carlos Aráoz Alvarado, and Celia Escamilla-Rivera. "Constraints on f (Q) logarithmic model using gravitational wave standard sirens". In: 524.4 (Oct. 2023), pp. 5280–5290. DOI: 10.1093/mnras/stad2180.

