## **SAIP2025**



Contribution ID: 400

Type: Poster Presentation

## SnO2-loaded Ga2O3-nanorods for selective and sensitive isopropanol sensing at low operating temperature.

N-type low-dimensional semiconducting oxides such as Ga<sub>2</sub>O<sub>3</sub> and SnO<sub>2</sub> have received significant interest in the detection of toxic gases due to their excellent opto-electronic response, thermal and chemical stability. However, key challenges such as high operating temperatures and poor selectivity continue to impede their practical usage. In this study, pure Ga<sub>2</sub>O<sub>3</sub> nanorods and SnO<sub>2</sub> nanoparticle-loaded Ga<sub>2</sub>O<sub>3</sub> nanorods composite have been synthesized by hydrothermal method. A systematic comparison of their gas sensing performance, focusing on sensitivity and selectivity was conducted. The Ga<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub> nanocomposite-based sensor exhibited an 8-fold enhancement in response to isopropanol compared to pure Ga<sub>2</sub>O<sub>3</sub>, with efficient operation at a reduced operating temperature of 80 deg;C. Moreover, the sensor showed superior selectivity towards isopropanol compared to other gases. These improvements can be attributed to the synergistic effects of high surface area, enhanced electron transport in nanorods, formation of depletion layers on Ga<sub>2</sub>O<sub>3</sub> and SnO<sub>2</sub> microstructures, creation of heterojunction interfaces between Ga<sub>2</sub>O<sub>3</sub> and SnO<sub>2</sub>, and abundant surface-adsorbed oxygen species. The proposed sensing mechanism of the Ga<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub>2</sub>/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnD<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<sub/SnO<su nanocomposite demonstrates the advantage of engineered nanostructures in advancing Ga<sub>2</sub>O<sub>3</sub>based gas sensors.

## Apply for student award at which level:

None

## Consent on use of personal information: Abstract Submission

Yes, I ACCEPT

**Primary author:** Dr GATSI, Nyepudzai C. (School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, 2050 WITS)

**Co-authors:** Prof. WAMWANGI, Daniel M. (School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, 2050 WITS); Prof. MHLONGO, Gugu H. (DSI/CSIR National Centre for Nanos-tructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria, 0001); Prof. ERASMUS, Rudolph M. (School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, 2050 WITS)

**Presenter:** Dr GATSI, Nyepudzai C. (School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, 2050 WITS)

Session Classification: Poster Session

Track Classification: Track A - Physics of Condensed Matter and Materials