EXPLORING LONG-TERM VARIATIONS OF IONOSPHERIC TOTAL ELECTRON CONTENT OVER SOUTH AFRICA

Modiri Mokaila

MSc Student (CSR-NWU)

Dr. Daniel Mojalefa Moeketsi

Centre for Space Research, North-West University, 11 Hoffman Street, Potchefstroom, South Africa

Prof. John-Bosco Habarulema

South African National Space Agency, Hospital Street, Hermanus 7200, South Africa

Prof SES Ferreira

Centre for Space Research, North-West University, 11 Hoffman Street, Potchefstroom, South Africa

OUTLINE

- The Sun, and Solar Cycle
- Global Navigation Satellite System
- Total Electron Content
- lonosphere
- Software Technique
- Results
- Summary and Future work

THE SUN AND SOLAR CYCLE

- Primary driver of atmospheric and geo-magnetic variability of the Earth
- Spatial, temporal nature of Earth atmosphere depend on solar activity, solar cycle (SS) progression, geomagnetic activity, seasons, local time
- Solar activity can be characterized by different solar proxies:
 - □ II-year cycle using sunspot numbers (R),

THE SUN AND SOLAR CYCLE (CONT...)

- Can be characterized by different solar proxies:
 - A 10.7 cm solar radio flux (F10.7),

THE SUN AND SOLAR CYCLE (CONT...)

- Can be characterized by different solar proxies:
 - the ratio of the h (279.9nm) & k

 (280.3nm) lines of the magnesium II

 emission (MgII)

GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS) AND TEC

- GNSS with a global coverage comprising of the GPS, GLONASS, BDS, Galileo.
- The GPS system uses a dual-frequency signals to transmit data between the satellite and ground-based receiver, which is transmitted through the atmosphere

 These signals undergo reflection, refraction, delay and can be used to study its dynamic nature, specifically

 \circ Total Electron Content (TEC); the number of electrons in a cylinder of $1m^2$ area between receiver and GPS satellite

Contact at destination

Wireless Inter-Node
Coordination

Coherent signal summation
at destination

GNSS AND TEC (CONT...)

- TEC is defined mathematically as $\int_{L}^{0} N_{e} dl$ where L: ray path length between a satellite and a receiver, N_{e} : electron number density
- o It is derived from the delay of dual-frequency GPS signals either by phase-delay measurements (L1, L2) as relative
 - TEC or pseudo-ranges (P2, P2) as absolute TEC
- Calculated as vertical TEC (vTEC) and/or slant ray TEC (sTEC),

Figure 5: GPS ground receiver. Source:https://www.sonel.org/spip.php?page=gps&idStation=699

IONOSPHERE

- Ionized layer between ~60km I000km (stratosphere, mesosphere, thermosphere), EUV, X-rays
- Effect on radio waves propagation (dispersive plasma), HF communications, navigation, remote sensing
- Understanding the dynamics allows proper calibration of astronomic equipment for better observation
- Better understanding of the influence of the sun on earth systems and technology, space weather monitoring, by studying long-term changes in the ionosphere

SOFTWARE

- Novel regularized Estimation technique of VTEC/STEC from GPS data
 - (https://www.ionolab.org/index.php?page=tec&language=en) Arikan et. al. 2004, 2005 and Nayir et. al 2007
- This technique combines multiple GPS signals at a given receiver for 24hrs at 30s resolution and assumes the ionosphere to be a single layer at 428.8 km
- Provides short-term and long-term variations in GPS-TEC

MODELLING

- Sutherland (SUTH) and Hartebeeshoek (HRAO) GPS station data is used, at a 25 years period
- o To calculate trends in TEC, model data by linear regression
- o TEC_mod = A + B*solarproxy
- Solar proxy: R, MgII, F10.7 as they eliminates solar cycle effects
- To calculate trends, we use residuals:

residuals = $TEC_{obs} - TEC_{mod}$, perform another regression with residuals = $C + \beta*time$ (monthly & yearly averages)

Residual plot of Yearly averaged TEC over HRAO station with R, MgII & F10.7cm radio solar flux used as a proxies (Daily Values)

Residual plot of Yearly averaged TEC over SUTH station with R, MgII & F10.7cm radio solar flux used as a proxies (Daily Values)

RESULTS

o These values show the coefficient B against 3 literature articles

Results			Urbar, Lastovika 2024	Lastovicka, Urbar, 2017	Natali et. al. 2024
STATION	SUTH	HRAO	JPL35 (Global)	JPL35, Lean et	Global TEC
Proxy				al. 2011 (Global)	
R	-0.0001±0.030	-0.043±0.057	0.012±0.032	-	0.01±0.01
MgII	-0.0073±0.12	-0.20±0.13	-0.067±0.028	-0.06±0.03	-0.39±0.05
F10.7	-0.21±0.11	-	-0.048±0.025	-0.05±0.03	-0.12±0.03

Residual plot of monthly averaged TEC over SUTH station with SNN, MgII & F10.7cm radio solar flux used as a proxies (Daily Values)

Residual plot of monthly averaged TEC over HRAO station with SNN, MgII & F10.7cm radio solar flux used as a proxies (Daily Values)

Results			Urbar, Lastovika 2024	Lastovicka, Urbar, 2017	Natali et. al. 2024
STATION	SUTH	HRAO	JPL35	JPL35, Lean et	GlobalTEC
Proxy			(Global)	al. 2011 (Global)	
R	-0.15±0.064	0.0029±0.056	0.012±0.032	-	0.01±0.01
MgII	- 0.3478±0.091	- 0.1814±0.054	-0.067±0.028	-0.06±0.03	-0.39±0.05
F10.7	- 0.2638±0.074	- 0.0906±0.052	-0.048±0.025	-0.05±0.03	-0.12±0.03

SUMMARY AND FUTURE WORK

- Study used 2 stations to investigate long-term changes in the ionosphere over the South African midlatitude
- Linear regression provides a close approximation of the model of observed data
- R, MgII & FI0.7 verifies a negative trend similar to literature
- The ionosphere is slowly decreasing over this region
- o Ingest South African TrigNET from HNUS and GRHM stations data into the IONOLAB algorithm

THANK YOU