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Abstract. There is a shortage of food production in the world, and the United Nations has pre-
dicted that if there is no conscious mitigation plan, the world may face food limitations in the
future. One of the strategies adopted to mitigate the shortage of food production is the green-
house intervention. However, it is necessary to understand the environmental conditions required
to ensure optimal crop production in a typical greenhouse. A fourth industrial revolution tech-
nology, namely the Internet of Things was used to measure the internal environmental conditions
(temperature, pressure, relative humidity, and COs) of a greenhouse. This was combined with
climate data. The work was performed at a sawtooth-shaped greenhouse at a residential Univer-
sity in Gauteng. The high temperatures of 40 °C and the low relative humidity of 20% found
during the day in some locations make the environment suitable only for crop varieties grown in
dry climates. Tomatoes in hotter and drier locations were observed to have poorer health than in
other locations. The measured data inside the greenhouse have larger temperature and humidity
ranges than the ERAS-Land satellite data for the local environment. Spectrum analysis was also
performed. The results indicate the need for a control system to manage the irrigation schedule,
fertiliser treatment, and vent openings. The study is designed to progress onward to decision
support by Al, informed by Computational Fluid Dynamics modelling. Ultimately there would
be an optimisation of the various strategies for controlling the growth conditions.

1 Introduction

Due to the increase in population and severe climate change, Africa and the rest of the world face a persistent food
shortage, and many citizens live in food insecurity [1]. Unpredictable weather patterns from the consequences
of climate change, among others, further exacerbate the food production crisis [2]. Until now, farmers in Africa
have relied mainly on traditional farming methods. The industrialisation of farming has resulted in significant
mechanization, which results in higher fossil fuel usage and non-tailored agricultural practices to specific crops [3].
This also results in over-fertilising and watering based on uniform crop needs, which may sometimes lead to food



waste, poor crop quality, and water waste [4], as well as run-off pollution to water sources [5]. As such, traditional
farming methods are losing traction in the realm of smart agriculture [6].

Smart agriculture involves collecting data to generate insight into environmental conditions and their impact on
the production of agricultural produce. Internet of Things (IoT) technologies such as microcontrollers and sensors
can be used to collect data as they are capable of providing real-time monitoring of plant health, soil moisture,
temperature, relative humidity, and CO2, which dictate crop growth quality [7]. This ensures improved crop health
by incorporating data into a larger intelligent control ecosystem. In addition, it facilitates a significant reduction of
water waste, efficient control of fertilizer resources, and an increase in crop growth yield and quality [8]. However,
the installation of IoT is challenging to implement in large area farms, where there is no closed area or controlled
climate. As such, greenhouses are gaining interest as a technology that is used to improve controlled farming
systems by providing a controlled environment that is otherwise difficult to achieve in the outdoors. This level of
control can provide suitable climate conditions for crop production. Controlling environmental conditions could
be efficient if a well-assisted natural circulation is implemented through an effective vent design. Important factors
in greenhouse design include the shape of the roof opening, which influences aerodynamics and consequently
natural cooling, as well as the greenhouse cover material for solar absorption. These can be optimised through
Computational Fluid Dynamics (CFD).

CFD is a numerical computer-aided method that provides numerical approximate solutions to the Navier-Stokes
equations, including coupled physics such as heat and mass transfer [9]. CFD has been implemented to simulate
various weather patterns in greenhouses, providing the efficient design of greenhouse environmental conditions and
performance [10]. IoT, CFD, and novel Machine Learning (ML) techniques can be combined into a digital twin of
a greenhouse fed on real-time data. The digital twin can predict changing weather patterns, help farmers increase
crop yield, and reduce resource wastage. Recently, an environmental monitoring sensor which utilises electronic
and fiber optic sensors has been deployed at CERN to monitor relative humidity and temperature distribution in
ATLAS Inner Tracker [11]. This same analytical method and technology were deployed to a typical greenhouse to
monitor its environmental conditions.

In this study, an in-house sensor was used to investigate the temperature and relative humidity profile of a
novel sawtooth greenhouse. 10T techniques and data analysis were employed to determine the best placement for
specific plant selection based on the measured internal greenhouse temperature, relative humidity, and pressure
conditions. The results obtained form a starting point for CFD modelling, further incorporated into a digital twin
of the greenhouse.

2 Methodology

A greenhouse located at the Centre for Ecological Intelligence (CEI) at the University of Johannesburg Bunting
Road Campus (Latitude -26.18955, Longitude 28.01157) was used for this study. It is 23 metres long and 18.65
metres wide, with a height of 6.3 metres. Various crops, including tomatoes, basil, eggplant, and radish, are
cultivated in the greenhouse. As shown in Figure 1, the greenhouse is a double-roofed, sawtooth-type greenhouse
where the roofs have a half-Rankine aerodynamic shape. The expectation is that when the wind flows over the
roof, it creates vortices (shown as swirls on the vents) that refresh the internal air by bringing cool air into the
interior (blue arrows) and sucking hot air out of the interior (red arrows).

Figure 1: (left) CEI Agrihub Sawtooth greenhouse at University of Johannesburg. Note the vents which form part
of the aerodynamic roof shape. The swirls represent vortices that bring cool air into the greenhouse and flush out
hot air, which is represented by red arrows, to the outside. (right) Internal structure of the greenhouse with various
crops within the greenhouse.



Wio terminals are part of the SEEED Wio family [12]. It generally refers to a series of Internet of Things (IoT)
development boards. The Wio terminal acts as a module that is designed for quick prototyping and easy integration
into various IoT applications. These boards are particularly known for their wireless communication capabilities,
compact design, and ease of use. The Wio terminals use an ATSAMDS1 microcontroller and support an 12C
connection. These Wio terminals, with their peripherals, were used as data logging devices with digital output
BME280 dual temperature and relative humidity sensors. The terminals were connected via a WiFi network to a
cloud that logs data remotely from the sensors to a ThingSpeak [13] dashboard that can be downloaded for analysis.
The temperature and relative humidity readings were generated.

The sensors were used to log data over fifty days to obtain meaningful results of temperature and relative
humidity fluctuations in the greenhouse in three primary locations over the length of a tomato crop along the
greenhouse. The data collected was then passed through a series of data analysis steps to refine data quality and
determine the temperature and relative humidity profiles. Once the data for a single location is downloaded, it is
segmented into separate days, where each day’s data is binned into minutes. The average temperature and relative
humidity are then calculated for each bin to produce an average 24 h temperature and relative humidity profile
of the greenhouse. Thereafter, the average profiles were calculated by taking the average of all three locations to
produce a single profile for temperature and relative humidity. The data is filtered for outliers and smoothed using
a Savitzky-Golay filter. The smoothed data is then treated as the null hypothesis in a likelihood fit (Chi Squared) of
the data. The error bars are determined by linear scaling (with an offset) to achieve a reduced chi-squared value of
unity where the smoothed curve forms the null hypothesis (pre-accepted by inspection). The results can be seen in
Figure 2. The plot is compared to data from ERAS5-Land [14] 2m near-surface air temperature (75,,) and relative
humidity data for trend verification. This comparison is also shown in Figure 2. A Fast Fourier Transform (FFT)
is used to search for daily and any possible other frequency components.
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Figure 2: Data analysis process used in study to produce average temperature and relative humidity profiles.

3 Results and Discussions

The results of this study are divided into two components: temperature and relative humidity results obtained, and
the FFT plots for analyzing the cyclical variations present in the greenhouse climate. The relative humidity (RH)
for ERAS-Land was calculated from the dewpoint and the temperature using the Magnus formula [15]:

 (Ry\ , 0T
(T, RH) = n (100) + 2 (1)
T, — y(T,RH) )

» b—~(T,RH)’

where the constants are b = 17.625 and ¢ =243.04 °C. The ERAS-Land T5,,, and the 2m dewpoint temperature
represent the temperature () and the dewpoint temperature (T, ), respectively, as input to equation 1 and equation
2 to solve for the RH.



3.1 Temperature and Relative Humidity distribution in the greenhouse

Figure 3 shows the average temperature and relative humidity profiles in the greenhouse. Furthermore, the plot of
ERAS5-Land for temperature and relative humidity was included. The sensor reading in the greenhouse suggests
an increase in temperature during sunrise. However, during dawn, there was a drop in temperature. Similar
behaviour was noticed for the ERAS-Land temperature distribution. However, the greenhouse retains a higher
temperature than the outside around 00:00 hours. This is due to the greenhouse obtaining high solar gains in
the daytime and retaining the heat. Additionally, the temperature increase is more pronounced than the outside,
showing the efficacy of solar retention within the greenhouse. This is also noted from the longer heat retention
shown from daytime to later, from 18:00 to 22:00 hours. The maximum temperature of 40 °C is relatively high.
This suggests that careful selection of plants that may not be adversely affected by high temperatures should be
introduced into the greenhouse. For example, well-known crops that can tolerate high temperature 35°C-45°C
such as okra (Abelmoschus esculentus) [16], eggplant (Brinjal/Solanum melongena) [17], sweet potato (Ipomoea
batatas) [18], hot peppers/Chili (Capsicum spp.) [19], tomato and maize [20] should be candidates to thrive in the
studied greenhouse. A drop in temperature was also noticed during the midday peak. Several factors are speculated
to have contributed to this. For instance, the sensors may have suffered a drift due to overheating or improper solar
shielding, leading to a dip in the temperature. Furthermore, during midday, there was an irrigation schedule, and
due to the hot temperature, the water began to evaporate, which caused a fogging effect in the greenhouse. This is
consistent with observations from Kumar et al. [21]. In addition, the roof shape and vent could also play a role in
the dip in temperature because the roof provides a shading impact at this time. Future studies will be carried out
using CFD to provide more insight into the temperature dip.

The sensor’s relative humidity profile, obtained as shown in Figure 3, is consistent with ERAS5-Land RH mea-
surements. This suggests that the obtained data are accurate. There was a relatively high relative humidity at night.
The effect of the high temperatures can be seen on the moisture and relative humidity conditions. The relative
humidity distribution is as low as 10% during midday. Additionally, the rise in relative humidity at midday, com-
plementary to the drop in temperature, can be seen, which supports the idea of evaporation creating the dip at these
times. However, the vents do not appear to provide enough cooling in these locations, possibly due to the wind
patterns during the data collection period.
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Figure 3: The plots of the average (leff) temperature, and (right) relative humidity profiles for a single row in the
greenhouse.

3.2 FFT Analysis

Figure 4 shows the plots of the FFT of the ERAS5-Land and sensor data collected from the greenhouse with am-
plitude in degrees Celsius. The ERA5-Land spectrum shows a strong peak at one cycle/day, which is the diurnal
temperature variation expected from day/night variation. The higher order harmonics are resulting from harmonic
distortion caused by a non-sinusoidal shape. The sensor’s greenhouse FFT spectrum shows a strong peak at one
cycle/day, which is coherent with the ERA5-Land data and expected from diurnal changes. Additionally, there
is an indication of a 2-cycle/day peak, from the double peak resulting from the midday dip seen in the average
temperature profile. The one cycle/day peak from the measured data is much higher than the ERAS-Land, showing
the increased solar gain in the greenhouse as compared to the outside.

Overall, the greenhouse retains high temperatures in the day and high relative humidity at night. There is no
evidence of the expected cooling effect from the vents. The results of this study are important as they will serve as
the basis for future studies by applying CFD, which can then further support the strategic design of the greenhouse.
Furthermore, IoT sensor technology has been used to monitor the temperature and relative humidity distribution in
a greenhouse, and the likelihood of selected crops being cultivated in the greenhouse was proposed.
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Figure 4: The FFT plots of (left) ERAS-Land data, and (right) data from the sensor in the greenhouse. The
amplitude is in degrees Celsius

4 Conclusion

IoT sensors were used to quantify the temperature and relative humidity profiles. The temperature and relative
humidity environmental conditions of the greenhouse were collected for fifty days. The obtained results show that
during the day at midday, the temperature could rise to 45 °C, which is higher than the ERAS5-Land maximum of
30°C. This was reflected in the measured data FFT spectrum having a higher power magnitude than ERA5-Land.
However, during the night the temperature was as low as 15 °C. The high temperature could be beneficial to the
cultivation of heat-tolerant crops. The relative humidity levels in the position of the row of tomato crops were
not consistent in higher temperature ranges, leaving the plants suitable for this area of the greenhouse limited to
high-temperature-resilient crops. Future studies will build on this data and including companion CFD studies that
will determine the optimal vent positions in the greenhouse for air circulation and cooling. An ML model that can
predict internal weather patterns using weather station data and the current real-time data being collected will be
deployed. This will lead to real-time decision-making tools for water schedules, to provide optimal water usage,
and prevent crop wastage. Together with the CFD, this will form a digital twin of the greenhouse fed by real-time
data, whilst using high-performance computing capabilities to infer plant health from environmental monitoring
tools. This can provide the necessary information to help improve crop production.
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