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Abstract. Photovoltaic (PV) module imaging has become a critical tool for assessing the
performance, reliability, and degradation of PV modules. Automated imaging systems that use
advanced hardware and image processing software tools allow for efficient high-throughput
data capture across large-scale solar installations. These systems use different imaging
techniques such as visible light (RGB) imaging, Thermal Infrared (TIR) imaging, ultraviolet
fluorescence (UVF) imaging, electroluminescence (EL) imaging, and line sensor scanning.
These imaging techniques allow for the detection of faults or anomalies in PV modules. We
report on a project focusing on the development of a system for high-throughput visual and
UV-F imaging of PV modules deployed in utility-scale PV plants. The work follows a two-step
approach whereby two systems will be built. The first step consists of a laboratory-based
imaging system to test the proof of concept. This system utilizes an Arduino MEGA 328P
microcontroller for position control and a Raspberry Pi 5 8 GB microprocessor for sensor
control, image capturing and storage. The images are then processed later through stitching and
basic visual classification. The second step will use techniques determined to be effective from
the initial system to build an onsite imaging and sensing system that allows for rapid, large-
scale image capture for further image processing and classification. This allows for more data
and images to be captured and thus processed as opposed to manual methods. At the same time,
this method has a much greater resolution as opposed to drone imaging. This paper presents the
design, manufacture, optimization and preliminary results from the laboratory-based system.

1 Introduction

Crystalline silicon (c-Si) PV modules consist of multiple bonded materials - glass, encapsulant, cells,
interconnections, and backsheet - forming several interfaces. These interfaces can act as pathways for
contaminants, causing degradation and reducing performance [1]. Effective encapsulation is essential for
ensuring module reliability and extending operational life. Field inspections have shown that degradation related
to poor encapsulation is a common cause of PV system failure. Proper encapsulation protects against moisture,
UV radiation, and mechanical stress, helping the module retain stable performance over time [1].

A fault in a PV module occurs when its power output is lower than expected due to either temporary factors (e.g.,
shading, dirt) or permanent issues (e.g., cracks, encapsulant degradation, disconnections) [2]. Fault detection
techniques help identify these issues and, although some may overlap, they enable comprehensive module
characterization [2]. These techniques are typically categorized into DC and AC side methods, with the DC side
further divided into electrical and imaging-based approaches [2]. The main imaging techniques are visual



inspection, thermal infrared (TIR), and electroluminescence (EL) [2], [3]. For effective detection, a technique
should: (A) detect faults without disrupting power, (B) localize the fault, (C) be cost-effective and adaptable, (D)
have a simple structure, and (E) apply to various PV systems [4].

Existing visual inspection methods often rely on manual image capture for each PV module [5]. While this
approach provides high-resolution imagery and is suitable for small-scale systems, it becomes impractical and
costly for large-scale PV plants due to the time and labour involved [5]. Unmanned Aerial VVehicles (UAVs) offer
a faster alternative but are limited by lower image quality and susceptibility to weather conditions [5]. Moreover,
regulatory constraints such as South Africa's restriction on drone flights within 10 km of airstrips and during
nighttime pose additional challenges. A solution is needed that combines high-resolution imaging with scalability
to meet the demands of large PV installations.

2  Theory

Crystalline silicon (c-Si) PV modules typically consist of a glass front cover, a polymeric encapsulant layer,
followed by mono- or polycrystalline silicon cells, another polymeric encapsulant layer, and a polymeric back
sheet or glass in the case of a bifacial PV module [6]. A standard photovoltaic (PV) module production process
typically includes the following steps: glass washing and drying; tabbing of cell ribbons and soldering of the cell
matrix; module lay-up with cross-connection soldering; embedding of the module layers; edge sealing and
framing; junction box attachment; and final power measurement [6]. Embedding in terms of PV modules is the
process in which the cell matrix is placed into a PV module. There a several types of embedding, but all experience
challenges to achieve uniform and sufficient curing or cross-linking levels to ensure strong adhesion and stable
laminates.

The decrease in efficiency and lifespan of a module is attributed mostly to Sunlight
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Multiple types of imaging techniques are used to fully characterise a PV module. For example, detection
techniques employed to identify optical failures are different from those employed for the detection of electrical
failures. Optical failures may be seen by the naked eye, such as visual imaging or UVF, whereas electrical losses
resulting from defects such as cracked cells or a disconnected string require electroluminescence imaging [4].
Visual imaging can be performed by the naked eye at an illumination level of 1000 lux and requires basic imagery
equipment [4]. Due to this effect, EL imaging is one of the most common imaging techniques used.

Traditional methods of imaging are comprised of two fields, laboratory- and field-based [9]. Laboratory-based
testing is optimum for testing such as EL, as lighting and external interference can be minimised [9]. However,
with the development of large-scale PV plants a field-based testing is needed [9]. Field testing relies on labour
extensively, requiring additional time and resources, leading to a limit to the number of modules that can be tested
within a reasonable amount of time [9]. A team at Sandia National Laboratories proposed a solution to this problem
by developing a robot PV monitoring system that reduced human intervention, allowing for adaptably to different-
sized PV systems and imaging techniques [10]. This work is similar in that automated image capture and basic
processing as an expected outcome that has a direct application in the PV industry.



3 Methodology

To develop an on-site imaging system, a lab-based prototype was first required to test the camera hardware,
control systems, and image processing software. The implementation of this prototype, referred to as the
“Gantry,” followed a structured process. First, the problem was defined, and a design solution proposed. Next,
both electrical and mechanical components were modelled in SolidWorks. The Gantry was then constructed
based on the CAD model, and a software control system was developed. Finally, a Python script was implemented
to stitch the captured images into a single high-definition composite.

3.1 Definition of Problem and Proposed Solution.

The problem definition established the need to capture high-definition images using various imaging techniques
to identify faults within PV modules. The system must be semi-autonomous, requiring only relative information
about the module and the selected imaging technique. It should feature a user interface for operator interaction
and store captured images for later access. Additionally, the system must support multiple cameras and
accommodate additional sensors for testing purposes. It should be adaptable to different module sizes and
designed to serve as the foundation for a fully on-site imaging system.

A proposed solution was developed in which the system is controlled by a Raspberry Pi for high-level operations
and user interface, while an Arduino Mega handles low-level control tasks. The mechanical design follows a two-
axis, dual-drive configuration utilizing three stepper motors to ensure precise movement. The system
accommodates PV modules up to 2.4 x 1.3 meters, covering the size range of most modern modules. A Python
script facilitates communication between the Raspberry Pi, camera, sensors, microcontroller, and operator,
providing comprehensive system control and support for all integrated features.

3.2 Design and Construction of the Gantry.

The CAD model of the gantry is shown in Figure 2. The structure of the gantry is built from 45 x 45 mm Bosch
Rexroth extrusion to allow for the ease of assembly and any modification needed. The design uses a dual-drive
motor setup whereby the Y axis is controlled by two NEMA 32 stepper motors to reduce racking caused by the
large design. The X axis is controlled by another NEMA 32 motor mounted to the axis or ‘rack’. Additionally,
the rack is built from a 20 x 40 mm V slot extrusion with a V-Plate as the end effector, which allows for the
mounting of a Raspberry Pi 5 8gb with a Pi-Camera 3 NOIR 12MP and a Sony IMX477 12 MP camera. Each
axis is driven with V belt and pulley with a minimum resolution of 0.1 mm/step on the X axis and 0.18 mm /step
on the Y axis.

The design incorporates 3D printed components for rapid prototyping of custom parts, as shown in the figure 3,
where a bracket securely holds the Raspberry Pi, cameras, and additional sensors mounted to the V-Plate. The
Raspberry Pi manages the high-level system control and provides a user interface via a Python script. It
communicates with an Arduino Mega 2560 microcontroller over USB using serial communication to manage low-
level tasks such as controlling the stepper motors, reading sensor inputs, handling user interfaces, and monitoring
an emergency stop button. The Arduino, along with the motor drivers, power supplies, and physical interface
components, is housed in a ventilated control box, shown in Figure 4. Manual control of the system can be
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Figure 2. CAD design of Gantry Figure 3. Raspberry Pi and Figure 4. Control Box
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3.3 Image capture, stitching, and processing.

The image capture sequence begins by entering the setup through a Python command prompt. During setup, the
user inputs the dimensions of the PV module, selects the desired camera, and chooses between UV or visual
imaging. Once configured, a 3D array of positional coordinates is generated to define all target locations. The
Raspberry Pi then sequentially sends each position to the Arduino. When the Arduino confirms it has reached the
specified position, the Pi captures an image using the selected camera. Each captured image is stored on a 500GB
SSD HAT and tagged with an identifying position for traceability. The ID tag in each photo is identified as
CXRYCZ where X refers to the position in the X-axis range starting from 0, and right to left of the module when
viewed from the front in portrait orientation. Y is similar to X but defines the row number from top to bottom of
the PV module. The determination of positions of positions in the array of coordinates is determined by the camera
selected, the size of the module, and the overlap of images for stitching.

4 Results and Discussion

Two fault detection techniques were used, viz. visual imaging and ultra-violet fluorescence (UVF) imaging. To
increase the lighting and reduce glare from laboratory lighting, four 10 W cool white (6000 K) lights were used
to illuminate the module. Each module was cleaned thoroughly before testing, as the main scope was to detect
permanent damage/faults within the module.

4.1 Challenges with image capture and stitching.

Capturing and stitching images to create a cohesive, single image is a complex task that requires both advanced
computational processing and precise mechanical design. One of the challenges encountered is image
overexposure caused by reflections from the extrusion frame under LED illumination. This issue can be mitigated
by applying a non-reflective film over the extrusion frame to reduce glare. Another challenge includes stitching
difficulties, particularly at the image edges, where alignment may fall within a cell rather than between them.
Although machine vision software such as OpenCV, which relies on pattern recognition, has been employed, the
repetitive and featureless nature of PV modules limits its effectiveness. As a result, a more reliable approach
involves precise mechanical indexing of the module and implementing edge detection to identify full cell
boundaries. This ensures stitching is performed at consistent locations outside the edges of each cell, improving
alignment and overall image quality.

4.2 Image processing and correction.

To improve the quality of the final stitched image, each image must first be rotated and corrected for distortion
before stitching can occur. The rotation process is illustrated in the Figure 5, beginning with the initial image
capture (A). A greyscale mask is then applied to enhance edge visibility (B), followed by a binary threshold to
reduce noise and isolate key features (C). OpenCV’s edge detection is subsequently used to identify points of
interest in the image (D). Based on these detected edges, OpenCV generates lines and computes their equations
(E), typically identifying either the cell fingers or the cell's outer edge if the fingers are not visible. Lines with
angles greater than 5 degrees from horizontal are discarded, and the image is rotated using the median angle of
the remaining lines (F). Since rotation introduces void regions along the image edges, the final step is to crop the
image to remove these empty borders (G).
A. Raw » B.Greyscale » C. Threshold » D. Edges » E.Lines —— F. Rotated - - G. Final
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Figure 5. Process of image correction for a single image before stitching




Figure 6 shows a stitched 540 W module with dimensions of 1130 x 2260 mm, this being one of the largest
modules able to be tested by the gantry. Images were captured using Raspberry Pi Camera 3 NOIR with 12 MP
resolution. Each Image size is roughly 1.9 MB, with a total of 56 images captured, resulting in a 223.6 MB image
when stitched together. Basic image stitching and blending are performed after the images are captured.

Figure 6. Stitched visual image
of large PV module with
reference to a single image

4.3 Faults and Defects: Visual Imaging

Several modules were tested using the visual imaging system developed. Figure 7 highlights both manufacturing
defects in PV modules and permanent damage caused by prolonged environmental exposure after installation.
Manufacturing faults such as trace misalignment, irregular cell patterns, and finger defects can introduce minor
mismatches within the module, leading to reduced power output. Edge chips, often caused during the doping
process of the silicon cell, can act as stress concentrators and result in cracks due to mechanical impact or thermal
cycling. These cracks may propagate, leading to microcracks, cell disconnects, and further degradation of both
the module’s performance and lifespan. Additional defects shown in the figure include cell delamination and flux
oxidation, which reduce module efficiency by generating localized heat and applying thermal stress to affected
cells. The scratch seen in Figure 7 is caused by contact with the frame of another module, depositing aluminium
onto the glass surface; this scratch is considered non-permanent and does not affect performance significantly.

Scratches  Trace Edge Chips Cell Patterns Finger Mid-Cell Flux Edge-Cell
Misalignment Defect Delamination oxidation Encapsulant

Delamination

Figure 7. Visual defects and faults found when testing

4.4 Faults and Defects found using UVF Imaging.

Several modules were tested using UVF imaging, and the following results were obtained from the module shown
in Figure 8. The figure illustrates a module whose backsheet fluoresces when exposed to ultraviolet light. A low-
pass filter (LEE Filter 101 Yellow) was used to reduce glare and saturation in images captured by the Raspberry
Pi 3 NOIR camera. Figure 9 reveals evidence of fluorescence quenching, a phenomenon where the module’s
encapsulant is exposed to moisture or oxygen through the backsheet. This exposure alters the molecular structure
of the polymer, thereby changing its fluorescence behaviour under UV light. Additionally, figure 10 shows a
localized area within one cell exhibits
unexpected fluorescence, which may be due
to a small hole in the cell or a deposit of
fluorescent material from the backsheet onto
the cell's front surface. This hole is also
visible in the standard visible spectrum,
suggesting a physical defect within the cell. If
present, such a defect can lead to cracking of
the cell, ultimately decreasing the power

output and shortening the lifespan of the  rjqre 8. Stitched UVF image with indication of fluorescent
module. material
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Figure 9. UVF: Quenching pattern Figure 10. Hole in cell

5 Conclusion

The development and testing of a laboratory-based imaging gantry for automated visual and UVF inspection of
PV modules demonstrates a promising approach for high-throughput, high-resolution fault detection. The system
integrates precise mechanical motion control, modular hardware, and advanced image processing to provide
detailed insights into both manufacturing defects and long-term degradation of PV modules. Key features include
a robust mechanical design, adaptable imaging modes, automated image capture, and custom stitching algorithms
capable of producing large composite images suitable for diagnostic analysis.

Preliminary results confirm the system’s effectiveness in detecting common visual and UVF-related faults, such
as edge chipping, cell delamination, and quenching caused by encapsulant degradation. Although challenges
remain—particularly in image alignment and illumination conditions—preprocessing techniques such as edge
detection, rotation correction, and cropping have led to significant improvements in overall image quality and
stitching accuracy. However, further refinement is still required.

This proof-of-concept system establishes a solid foundation for future on-site deployment, where the
methodology can be scaled to accommaodate utility-scale PV installations. Future work will focus on enhancing
image processing and stitching algorithms, incorporating additional testing techniques such as
electroluminescence (EL), and increasing automation to enable real-time, large-scale PV inspection with minimal
human intervention.
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