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Abstract. Photovoltaic (PV) module imaging has become a critical tool for assessing the 
performance, reliability, and degradation of PV modules. Automated imaging systems that use 
advanced hardware and image processing software tools allow for efficient high-throughput 
data capture across large-scale solar installations. These systems use different imaging 
techniques such as visible light (RGB) imaging, Thermal Infrared (TIR) imaging, ultraviolet 
fluorescence (UVF) imaging, electroluminescence (EL) imaging, and line sensor scanning. 
These imaging techniques allow for the detection of faults or anomalies in PV modules. We 
report on a project focusing on the development of a system for high-throughput visual and 
UV-F imaging of PV modules deployed in utility-scale PV plants. The work follows a two-step 
approach whereby two systems will be built. The first step consists of a laboratory-based 
imaging system to test the proof of concept. This system utilizes an Arduino MEGA 328P 
microcontroller for position control and a Raspberry Pi 5 8 GB microprocessor for sensor 
control, image capturing and storage. The images are then processed later through stitching and 
basic visual classification. The second step will use techniques determined to be effective from 
the initial system to build an onsite imaging and sensing system that allows for rapid, large-
scale image capture for further image processing and classification. This allows for more data 
and images to be captured and thus processed as opposed to manual methods. At the same time, 
this method has a much greater resolution as opposed to drone imaging. This paper presents the 
design, manufacture, optimization and preliminary results from the laboratory-based system. 

1 Introduction 

 

Crystalline silicon (c-Si) PV modules consist of multiple bonded materials - glass, encapsulant, cells, 

interconnections, and backsheet - forming several interfaces. These interfaces can act as pathways for 

contaminants, causing degradation and reducing performance [1]. Effective encapsulation is essential for 

ensuring module reliability and extending operational life. Field inspections have shown that degradation related 

to poor encapsulation is a common cause of PV system failure. Proper encapsulation protects against moisture, 

UV radiation, and mechanical stress, helping the module retain stable performance over time [1]. 

A fault in a PV module occurs when its power output is lower than expected due to either temporary factors (e.g., 

shading, dirt) or permanent issues (e.g., cracks, encapsulant degradation, disconnections) [2]. Fault detection 

techniques help identify these issues and, although some may overlap, they enable comprehensive module 

characterization [2]. These techniques are typically categorized into DC and AC side methods, with the DC side 

further divided into electrical and imaging-based approaches [2]. The main imaging techniques are visual 



inspection, thermal infrared (TIR), and electroluminescence (EL) [2], [3]. For effective detection, a technique 

should: (A) detect faults without disrupting power, (B) localize the fault, (C) be cost-effective and adaptable, (D) 

have a simple structure, and (E) apply to various PV systems [4]. 

Existing visual inspection methods often rely on manual image capture for each PV module [5]. While this 

approach provides high-resolution imagery and is suitable for small-scale systems, it becomes impractical and 

costly for large-scale PV plants due to the time and labour involved [5]. Unmanned Aerial Vehicles (UAVs) offer 

a faster alternative but are limited by lower image quality and susceptibility to weather conditions [5]. Moreover, 

regulatory constraints such as South Africa's restriction on drone flights within 10 km of airstrips and during 

nighttime pose additional challenges. A solution is needed that combines high-resolution imaging with scalability 

to meet the demands of large PV installations. 

2 Theory 

 

Crystalline silicon (c-Si) PV modules typically consist of a glass front cover, a polymeric encapsulant layer, 

followed by mono- or polycrystalline silicon cells, another polymeric encapsulant layer, and a polymeric back 

sheet or glass in the case of a bifacial PV module [6]. A standard photovoltaic (PV) module production process 

typically includes the following steps: glass washing and drying; tabbing of cell ribbons and soldering of the cell 

matrix; module lay-up with cross-connection soldering; embedding of the module layers; edge sealing and 

framing; junction box attachment; and final power measurement [6]. Embedding in terms of PV modules is the 

process in which the cell matrix is placed into a PV module. There a several types of embedding, but all experience 

challenges to achieve uniform and sufficient curing or cross-linking levels to ensure strong adhesion and stable 

laminates. 

 

The decrease in efficiency and lifespan of a module is attributed mostly to 

optical degradation and electrical mismatch [7]. Optical faults are the result 

of poor quality of the encapsulant layer, prolonged exposure to high 

temperatures and humidity, and ingress of oxygen into the module, 

accelerating corrosion [7], [8]. Figure  1 shows the process of water or 

oxygen ingress into the PV module through the backsheet and into the 

encapsulant layer, resulting in a change in the composition of the 

encapsulant known as quenching [8]. This change in composition of the 

encapsulant has an effect on the fluorescence of the material and thus will 

fluoresce at a different wavelength, allowing for identification of 

microcracks in a PV cell that are not seen with visual imaging [8]. This 

highlights the need for multiple image techniques to fully understand the 

performance of a PV module. 

 

Multiple types of imaging techniques are used to fully characterise a PV module. For example, detection 

techniques employed to identify optical failures are different from those employed for the detection of electrical 

failures. Optical failures may be seen by the naked eye, such as visual imaging or UVF, whereas electrical losses 

resulting from defects such as cracked cells or a disconnected string require electroluminescence imaging [4]. 

Visual imaging can be performed by the naked eye at an illumination level of 1000 lux and requires basic imagery 

equipment [4]. Due to this effect, EL imaging is one of the most common imaging techniques used. 

 

Traditional methods of imaging are comprised of two fields, laboratory- and field-based [9]. Laboratory-based 

testing is optimum for testing such as EL, as lighting and external interference can be minimised [9]. However, 

with the development of large-scale PV plants a field-based testing is needed [9]. Field testing relies on labour 

extensively, requiring additional time and resources, leading to a limit to the number of modules that can be tested 

within a reasonable amount of time [9]. A team at Sandia National Laboratories proposed a solution to this problem 

by developing a robot PV monitoring system that reduced human intervention, allowing for adaptably to different-

sized PV systems and imaging techniques [10]. This work is similar in that automated image capture and basic 

processing as an expected outcome that has a direct application in the PV industry. 

 

  

Figure 1. Ingress of water 

and oxygen into a PV 

module [8] 



3 Methodology  

To develop an on-site imaging system, a lab-based prototype was first required to test the camera hardware, 
control systems, and image processing software. The implementation of this prototype, referred to as the 
“Gantry,” followed a structured process. First, the problem was defined, and a design solution proposed. Next, 
both electrical and mechanical components were modelled in SolidWorks. The Gantry was then constructed 
based on the CAD model, and a software control system was developed. Finally, a Python script was implemented 
to stitch the captured images into a single high-definition composite. 

3.1 Definition of Problem and Proposed Solution. 

The problem definition established the need to capture high-definition images using various imaging techniques 
to identify faults within PV modules. The system must be semi-autonomous, requiring only relative information 
about the module and the selected imaging technique. It should feature a user interface for operator interaction 
and store captured images for later access. Additionally, the system must support multiple cameras and 
accommodate additional sensors for testing purposes. It should be adaptable to different module sizes and 
designed to serve as the foundation for a fully on-site imaging system.  

A proposed solution was developed in which the system is controlled by a Raspberry Pi for high-level operations 
and user interface, while an Arduino Mega handles low-level control tasks. The mechanical design follows a two-
axis, dual-drive configuration utilizing three stepper motors to ensure precise movement. The system 
accommodates PV modules up to 2.4 × 1.3 meters, covering the size range of most modern modules. A Python 
script facilitates communication between the Raspberry Pi, camera, sensors, microcontroller, and operator, 
providing comprehensive system control and support for all integrated features. 

3.2 Design and Construction of the Gantry. 

The CAD model of the gantry is shown in Figure 2. The structure of the gantry is built from 45 x 45 mm Bosch 
Rexroth extrusion to allow for the ease of assembly and any modification needed. The design uses a dual-drive 
motor setup whereby the Y axis is controlled by two NEMA 32 stepper motors to reduce racking caused by the 
large design. The X axis is controlled by another NEMA 32 motor mounted to the axis or ‘rack’. Additionally, 
the rack is built from a 20 x 40 mm V slot extrusion with a V-Plate as the end effector, which allows for the 
mounting of a Raspberry Pi 5 8gb with a Pi-Camera 3 NOIR 12MP and a Sony IMX477 12 MP camera. Each 
axis is driven with V belt and pulley with a minimum resolution of 0.1 mm/step on the X axis and 0.18 mm /step 
on the Y axis.  
 

The design incorporates 3D printed components for rapid prototyping of custom parts, as shown in the figure 3, 
where a bracket securely holds the Raspberry Pi, cameras, and additional sensors mounted to the V-Plate. The 
Raspberry Pi manages the high-level system control and provides a user interface via a Python script. It 
communicates with an Arduino Mega 2560 microcontroller over USB using serial communication to manage low-
level tasks such as controlling the stepper motors, reading sensor inputs, handling user interfaces, and monitoring 
an emergency stop button. The Arduino, along with the motor drivers, power supplies, and physical interface 
components, is housed in a ventilated control box, shown in Figure 4. Manual control of the system can be 
performed using onboard buttons and a joystick, without requiring communication with the Raspberry Pi. 
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3.3 Image capture, stitching, and processing.  

The image capture sequence begins by entering the setup through a Python command prompt. During setup, the 
user inputs the dimensions of the PV module, selects the desired camera, and chooses between UV or visual 
imaging. Once configured, a 3D array of positional coordinates is generated to define all target locations. The 
Raspberry Pi then sequentially sends each position to the Arduino. When the Arduino confirms it has reached the 
specified position, the Pi captures an image using the selected camera. Each captured image is stored on a 500GB 
SSD HAT and tagged with an identifying position for traceability. The ID tag in each photo is identified as 
CXRYCZ where X refers to the position in the X-axis range starting from 0, and right to left of the module when 
viewed from the front in portrait orientation. Y is similar to X but defines the row number from top to bottom of 
the PV module. The determination of positions of positions in the array of coordinates is determined by the camera 
selected, the size of the module, and the overlap of images for stitching. 

4 Results and Discussion 

Two fault detection techniques were used, viz. visual imaging and ultra-violet fluorescence (UVF) imaging. To 
increase the lighting and reduce glare from laboratory lighting, four 10 W cool white (6000 K) lights were used 
to illuminate the module. Each module was cleaned thoroughly before testing, as the main scope was to detect 
permanent damage/faults within the module.  

4.1 Challenges with image capture and stitching. 

Capturing and stitching images to create a cohesive, single image is a complex task that requires both advanced 
computational processing and precise mechanical design. One of the challenges encountered is image 
overexposure caused by reflections from the extrusion frame under LED illumination. This issue can be mitigated 
by applying a non-reflective film over the extrusion frame to reduce glare. Another challenge includes stitching 
difficulties, particularly at the image edges, where alignment may fall within a cell rather than between them. 
Although machine vision software such as OpenCV, which relies on pattern recognition, has been employed, the 
repetitive and featureless nature of PV modules limits its effectiveness. As a result, a more reliable approach 
involves precise mechanical indexing of the module and implementing edge detection to identify full cell 
boundaries. This ensures stitching is performed at consistent locations outside the edges of each cell, improving 
alignment and overall image quality. 

4.2 Image processing and correction. 

To improve the quality of the final stitched image, each image must first be rotated and corrected for distortion 
before stitching can occur. The rotation process is illustrated in the Figure 5, beginning with the initial image 
capture (A). A greyscale mask is then applied to enhance edge visibility (B), followed by a binary threshold to 
reduce noise and isolate key features (C). OpenCV’s edge detection is subsequently used to identify points of 
interest in the image (D). Based on these detected edges, OpenCV generates lines and computes their equations 
(E), typically identifying either the cell fingers or the cell's outer edge if the fingers are not visible. Lines with 
angles greater than 5 degrees from horizontal are discarded, and the image is rotated using the median angle of 
the remaining lines (F). Since rotation introduces void regions along the image edges, the final step is to crop the 
image to remove these empty borders (G). 

 
Figure 5. Process of image correction for a single image before stitching 



Figure 6 shows a stitched 540 W module with dimensions of 1130 x 2260 mm, this being one of the largest 
modules able to be tested by the gantry. Images were captured using Raspberry Pi Camera 3 NOIR with 12 MP 
resolution. Each Image size is roughly 1.9 MB, with a total of 56 images captured, resulting in a 223.6 MB image 
when stitched together. Basic image stitching and blending are performed after the images are captured.  

 

4.3 Faults and Defects: Visual Imaging 

Several modules were tested using the visual imaging system developed. Figure 7 highlights both manufacturing 
defects in PV modules and permanent damage caused by prolonged environmental exposure after installation. 
Manufacturing faults such as trace misalignment, irregular cell patterns, and finger defects can introduce minor 
mismatches within the module, leading to reduced power output. Edge chips, often caused during the doping 
process of the silicon cell, can act as stress concentrators and result in cracks due to mechanical impact or thermal 
cycling. These cracks may propagate, leading to microcracks, cell disconnects, and further degradation of both 
the module’s performance and lifespan. Additional defects shown in the figure include cell delamination and flux 
oxidation, which reduce module efficiency by generating localized heat and applying thermal stress to affected 
cells. The scratch seen in Figure 7 is caused by contact with the frame of another module, depositing aluminium 
onto the glass surface; this scratch is considered non-permanent and does not affect performance significantly. 

 

4.4 Faults and Defects found using UVF Imaging. 

Several modules were tested using UVF imaging, and the following results were obtained from the module shown 
in Figure 8. The figure illustrates a module whose backsheet fluoresces when exposed to ultraviolet light. A low-
pass filter (LEE Filter 101 Yellow) was used to reduce glare and saturation in images captured by the Raspberry 
Pi 3 NOIR camera. Figure 9 reveals evidence of fluorescence quenching, a phenomenon where the module’s 
encapsulant is exposed to moisture or oxygen through the backsheet. This exposure alters the molecular structure 
of the polymer, thereby changing its fluorescence behaviour under UV light. Additionally, figure 10 shows a 
localized area within one cell exhibits 
unexpected fluorescence, which may be due 
to a small hole in the cell or a deposit of 
fluorescent material from the backsheet onto 
the cell's front surface. This hole is also 
visible in the standard visible spectrum, 
suggesting a physical defect within the cell. If 
present, such a defect can lead to cracking of 
the cell, ultimately decreasing the power 
output and shortening the lifespan of the 
module.  

Figure 6. Stitched visual image 

of large PV module with 

reference to a single image 

Figure 7. Visual defects and faults found when testing 

Figure 8. Stitched UVF image with indication of fluorescent 

material   



 

 

 

 

 

 

 

 

 

 

 

5 Conclusion 

The development and testing of a laboratory-based imaging gantry for automated visual and UVF inspection of 
PV modules demonstrates a promising approach for high-throughput, high-resolution fault detection. The system 
integrates precise mechanical motion control, modular hardware, and advanced image processing to provide 
detailed insights into both manufacturing defects and long-term degradation of PV modules. Key features include 
a robust mechanical design, adaptable imaging modes, automated image capture, and custom stitching algorithms 
capable of producing large composite images suitable for diagnostic analysis. 
 
Preliminary results confirm the system’s effectiveness in detecting common visual and UVF-related faults, such 
as edge chipping, cell delamination, and quenching caused by encapsulant degradation. Although challenges 
remain—particularly in image alignment and illumination conditions—preprocessing techniques such as edge 
detection, rotation correction, and cropping have led to significant improvements in overall image quality and 
stitching accuracy. However, further refinement is still required. 
 
This proof-of-concept system establishes a solid foundation for future on-site deployment, where the 
methodology can be scaled to accommodate utility-scale PV installations. Future work will focus on enhancing 
image processing and stitching algorithms, incorporating additional testing techniques such as 
electroluminescence (EL), and increasing automation to enable real-time, large-scale PV inspection with minimal 
human intervention. 
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Figure 9. UVF: Quenching pattern Figure 10. Hole in cell 


