
Evaluation of the Phototoxic effect of Chemically 
Synthesized Silver Nanoparticles on Breast Cancer Cells  

Isaac Baidoo, Paromita Sarbadhikary and Blassan P George* 

Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 
17011, Doornfontein 2028, South Africa 

E-mail: blassang@uj.ac.za    

Abstract. Due to their multifaceted biological activity, including reactive oxygen species 
(ROS) generation, interference with cellular metabolism, and potential to overcome multidrug 
resistance, silver nanoparticles (AgNPs) have been increasingly investigated for their role in 
anticancer strategies. Beyond their intrinsic cytotoxicity, AgNPs also exhibit utility in drug 
delivery and cancer diagnostics. Notably, their ability to convert absorbed light into heat 
enables targeted photothermal therapy. This study evaluates the chemotoxic and phototoxic 
effects of chemically synthesized AgNPs on MCF-7 human breast cancer cells. AgNPs were 
synthesized via chemical reduction and characterized using UV–Vis spectroscopy, dynamic 
light scattering (DLS), and Zetasizer analysis. The resulting nanoparticles displayed a surface 
plasmon resonance (SPR) peak at 401 nm, an average hydrodynamic size of 119.3 nm, zeta 
potential of −30.8 mV, and a polydispersity index (PDI) of 0.269, indicating good colloidal 
stability. MTT assays showed dose-dependent cytotoxicity, with the IC₅₀ value decreased from 
7.3 µg/mL under dark conditions to 4.3 µg/mL following 405 nm (5 J/cm²) laser irradiation. 
Photothermal assessment revealed a ~3 °C temperature increase in AgNP suspensions 
compared to a negligible rise (~1 °C) in the control, confirming their photothermal conversion 
efficiency. Morphological changes observed via bright-field microscopy further supported 
AgNP-induced cell damage. These findings suggest that enhanced cytotoxicity results from a 
combination of localized hyperthermia and ROS production, highlighting the synergistic 
photothermal and photodynamic properties of AgNPs. Overall, this study supports the potential 
of citrate-borohydride synthesized AgNPs as effective photo-responsive agents for targeted 
breast cancer therapy. 

1 Introduction 

Breast cancer continues to rank among the most prevalent forms of cancer and remains a major contributor to 

cancer-related deaths among women across the globe [1]. Across Africa, it makes up nearly 17% of all female 

cancers and is responsible for about one in five cancer-related deaths among women. In South Africa, more than 

9,200 new cases are recorded each year, with an incidence rate of 50.8 per 100,000, making it the most common 

cancer among South African women [2, 3]. While conventional treatment strategies such as chemotherapy and 

radiotherapy have led to improvements in patient prognosis, they are still hindered by several limitations. These 

include systemic toxicity, lack of selectivity, and the eventual emergence of therapeutic resistance [4, 5]. 

Considering these challenges, nanotechnology has emerged as a transformative tool in the field of oncology, 

offering enhanced specificity and therapeutic precision. Among the various nanomaterials developed, AgNPs 

have attracted substantial interest due to their distinct physicochemical characteristics and inherent cytotoxic 



capabilities toward cancer cells [6]. The selective accumulation of nanoparticles within tumour tissue is largely 

facilitated by the Enhanced Permeability and Retention (EPR) effect, which arises from the leaky vasculature 

and poor lymphatic drainage commonly found in solid tumours, thereby promoting preferential uptake of AgNPs 

at the tumour site [7]. The antitumor potential of AgNPs is mainly linked to their ability to induce Reactive 

Oxygen Species (ROS), impair mitochondrial dynamics, and disrupt essential cellular signaling cascades [8]. 

Additionally, AgNPs serve as versatile carriers for anticancer drugs, contributing to better solubility, improved 

bioavailability, and more efficient targeted delivery [9]. 

In addition to their inherent cytotoxic properties, AgNPs exhibit photo-responsive properties. Their strong surface 

plasmon resonance (SPR) allows absorption of specific light wavelengths, converting them into localized heat, a 

plasmonic photothermal effect [10]. Light activation also enhances ROS generation, eliciting a photodynamic 

effect that intensifies oxidative stress in cancer cells [11]. These dual mechanisms make AgNPs promising anti-

cancer agents for minimally invasive cancer therapies. Their efficacy, however, is influenced by factors such as 

particle size, surface charge, and colloidal stability, which are largely dictated by synthesis methods. Chemical 

reduction using sodium borohydride remains a widely adopted approach for generating stable, well-defined 

AgNPs [12]. As nanotechnology converges with phototherapy, the development of light-activated AgNP systems 

represents a growing frontier in cancer treatment, warranting further investigation into their physicochemical-

biological interactions and therapeutic optimization. This work aims to evaluate the chemotoxic and phototoxic 

effects of chemically synthesized AgNPs on MCF-7 breast cancer cells, with a focus on their photothermal and 

photodynamic contributions under 405 nm laser irradiation. 

2 Materials and Methods 

2.1 Synthesis of AgNPs 

AgNPs were synthesized via chemical reduction method [13]. Briefly, a 10 mL solution of 1 mM silver nitrate 

(AgNO₃) was prepared and heated to 45–50 °C under stirring (500 rpm), followed by the addition of 1 mL of 

1 mM sodium citrate (Na3C6H5O7) as a reducing agent. Subsequently, 2–3 drops of 0.1 M sodium borohydride 

(NaBH₄) were added dropwise as a coalescence. The reaction was stirred vigorously for 5 minutes, with a 

yellowish-brown colour change confirming AgNP formation. The newly synthesised AgNPs were centrifuged to 

collect them in pellets, dried, and weighed. AgNPs dissolved in distilled water were stored at 4 ºC for further 

analysis and experiments.  

2.2 Characterization of AgNPs  

The synthesized AgNPs were characterized to verify formation and evaluate physicochemical properties. UV–
Vis absorption spectra were recorded between 300–600 nm using a VICTOR Nivo™ multimode plate reader 
(PerkinElmer) to confirm SPR. Particle size, polydispersity index (PDI), and zeta potential were measured using 
a Zetasizer Nano ZS (v7.10, Malvern Instruments, UK) at a fixed scattering angle and controlled temperature. 

2.3 Photothermal Effect Measurement  

Photothermal activity was examined by dissolving 10 mg of freeze-dried AgNPs in 2 mL of Milli-Q water to 
yield a 5 mg/mL suspension. This solution was placed in a sterile 35 mm petri dish, while a control containing 
only 2 mL of Milli-Q water was prepared in parallel. Both samples were irradiated with a 405 nm blue diode laser 
at an energy fluence of 5 J/cm². Surface temperature was monitored using an infrared thermal imaging camera at 
the start of irradiation and after 5 minutes of continuous laser exposure. 

2.4 Cell Culture 

The human breast adenocarcinoma cell line MCF-7 (ATCC® HTB-22™) was procured from the American Type 
Culture Collection (ATCC) and maintained under standard culture conditions in Dulbecco’s Modified Eagle 
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Pen-
Strep). Cells were maintained at 37 °C in a humidified incubator under 5% CO₂ atmosphere and sub-cultured 
upon reaching 70–80% confluency.  

2.5 Treatment 
To evaluate the chemo and phototoxic effects of AgNPs, MCF-7 cells were seeded in 96-well plates and treated 
with AgNP concentrations of 1.25, 2.5, 5, 10 and 20  µg/mL for 24 h. Phototoxicity was evaluated by treating 
cells with the same AgNP concentrations for 24 h, followed by irradiation using a 405 nm blue light diode laser 



at a light dose of 5 J/cm², with intensity maintained between 22 and 23 mW/cm². Control groups included an 
untreated group (without AgNPs treatment and irradiation) and a light control group (without AgNPs treatment). 

2.6 MTT Cell Viability Assay  

Cell viability was evaluated using the MTT assay (Cell Proliferation Kit I, No. 11465007001, Invitrogen™), 

which measures mitochondrial-dependent conversion of MTT into insoluble formazan by metabolically active 

cells. Post treatment and incubation period, 10 μL of the MTT labelling reagent was added to each well and cells 

were incubated at 37 °C for 3 h. Formazan crystals were dissolved using 100 µL of Solubilization solution into 

each well, plates were made to stand overnight in the incubator, and the optical density at 540 nm was recorded 

using a VICTOR Nivo™ (PerkinElmer) multimode plate reader. Viability was calculated relative to untreated 

controls.  

2.7 Morphological Analysis 

Morphological changes were assessed using bright-field microscopy. MCF-7 cells treated with IC₅₀ 

concentrations of AgNPs with and without irradiation were imaged alongside untreated groups using a Wirsan 

Olympus CKX 41 inverted microscope with an Olympus C5060-ADUS camera equipped with CellSens software 

(v2.3).   

2.8 Statistical analysis 

All experiments were conducted in triplicate and repeated independently. Differences between the treated and 

control groups were analyzed using the Student’s t-test to determine statistical significance. Statistical analysis 

was performed using SigmaPlot version 14.0, with results reported as mean ± SD. Significance levels were 

indicated as *p < 0.05, **p < 0.01, and *p < 0.001. 

3 Results 

3.1 Characterisation of AgNPs 

Fig. 1a shows that the formation of AgNPs through UV–Visible absorption spectroscopy with a distinct SPR 
peak at 401 nm. As shown in Fig 1b and Fig 1c, DLS analysis showed an average hydrodynamic diameter of 
approximately 119.3 nm, a zeta potential of −30.8 mV, and a PDI of 0.269 at pH 7.4. These values indicate good 
colloidal stability and uniform particle distribution under physiological conditions.  

 

 

 

 

 

 

 

 

Figure 1. (a) UV–Visible absorption spectrum for AgNPs, (b) zeta potential, and (c) particle size.    

  (a) 

 (b)  (c) 



3.2 Photothermal Activity of AgNPs  

Fig. 2 shows the thermal response of AgNP suspensions and water (control) following 5 minutes of irradiation 
with a 405 nm laser at an intensity of ~21.94 mW/cm2. The AgNP-treated sample exhibited a temperature increase 
of approximately 2.8 °C, while the water control showed a minimal rise of ~0.9 °C. This indicates the moderate 
photothermal conversion ability of AgNPs under light exposure. 

 

Figure 2: Thermal images of irradiated water and AgNPs solution at 0 and 5 min. 

3.3  Chemotoxic and Phototoxic Effects on MCF-7 Cells 

MCF-7 cells treated with AgNPs exhibited a concentration-dependent decrease in cell viability in both 
unirradiated and irradiated groups (Fig. 3a). The half-maximal inhibitory concentration (IC₅₀) for AgNPs in the 
absence of irradiation (chemotoxicity) was determined to be 7.3 µg/mL. Upon irradiation, the IC₅₀ dropped to 4.3 
µg/mL, indicating a significant enhancement in cytotoxicity when combined with phototherapy (Fig. 3b). This 
reflects an approximate twofold increase in cell death, suggesting the additive or synergistic contribution of light-
induced cytotoxicity. 

                                         

Figure 3. (a) Percentage cell viability of MCF-7 cells treated with AgNPs with and without light irradiation 
determined by MTT assay post 24 h, (b) sigmoidal concentration-response curve of both treatment groups.  IC₅₀ 
values are indicated for both treatment groups. Data points in the graphs are represented as mean ± SD from 
experiments repeated in triplicate. *(p <0.05), **(p <0.01), ***(p < 0.005) indicate significant difference. 

3.4 Treatment-induced morphological changes 

(a) (b) 



Fig. 4 shows morphological changes in MCF-7 cells treated at IC₅₀ concentrations. AgNP treatment combined 
with irradiation (Fig. 4c) induced pronounced morphological changes, including cell rounding, detachment from 
the culture surface, and membrane damage, compared to the untreated and unirradiated group (Fig. 4a and 4b). 

 

 

 

 

 

Figure 4. Phase contrast images of MCF-7 cells, (a) untreated control, (b) AgNPs-treated (dark), (c) AgNPs-

treated (irradiated) at IC₅₀ concentrations under a magnification of 200x.  

4 Discussion  

The present study explored the chemotoxic and phototoxic potential of chemically synthesized AgNPs against 

the MCF-7 human breast cancer cell line. UV-Vis spectroscopy and DLS characterization (Fig. 1) confirmed the 

formation of stable, monodisperse nanoparticles with a characteristic SPR peak at 401 nm and a hydrodynamic 

size of 119.3 nm, appropriate for cellular interaction and uptake. These physicochemical properties are consistent 

with literature reports indicating that AgNPs with sizes around 100–120 nm exhibit optimal cellular 

internalization and interaction for therapeutic purposes [14]. Cell viability analysis demonstrated a dose-

dependent cytotoxic response under both dark and irradiated conditions. Notably, the IC₅₀ value decreased from 

7.3 µg/mL (dark) to 4.3 µg/mL upon 405 nm laser exposure, indicating enhanced cell killing due to phototoxic 

activation. This enhanced effect is likely driven by the combined influence of ROS generation and localized heat 

production via the plasmonic properties of AgNPs. These findings align with previous studies demonstrating the 

synergistic potential of nanoparticle-assisted phototherapy in cancer treatment. El-Hussein and Hamblin similarly 

observed that light-activated AgNPs induced DNA damage and apoptosis in lung cancer cells through ROS-

mediated stress and disruption of mitochondrial membrane potential, indicating that such phototoxic mechanisms 

may be effective across various cancer cell types [10, 15].  

The photothermal analysis confirmed a measurable temperature increase (2.8 °C) in AgNP under 405 nm laser 

irradiation, compared to a negligible rise (0.9 °C) in the control. While this increase may appear modest, it reflects 

localized intracellular heating, which, combined with oxidative stress, can initiate apoptosis or necrosis in cancer 

cells [16]. This is further supported by the observed structural collapse and membrane disruption in treated cells, 

aligning with reports by Shipunova et al. (2022) where HER2-targeted AgNPs induced potent photothermal 

apoptosis in cancer models [17]. Morphological observations further supported the cytotoxic effect of AgNPs 

combined with phototherapy. Cells treated with AgNPs alone exhibited insignificant morphological alterations, 

compared to the significant structural damage, including membrane disruption and cell collapse in combined 

treatment group. Thus, our preliminary results suggested, the effectiveness of AgNPs to function as 

photoresponsive agents that enhance cytotoxicity when activated by blue light.  

These findings affirm that citrate-borohydride synthesized AgNPs can induce significant cytotoxicity under laser 

irradiation, primarily through synergistic ROS generation and local photothermal effects. This supports the 

growing body of evidence positioning AgNPs as effective dual-mode agents in nanoparticle-mediated 

phototherapy for breast cancer.  

5 Conclusion 

This study demonstrated that chemically synthesized AgNPs exhibit enhanced cytotoxic effects against MCF-7 

breast cancer cells when irradiated at 405 nm. The ability of AgNPs to generate localized heat and the potential 

to generate ROS upon irradiation makes them photo-enhanced cancer agents. This offers a promising platform 

for targeted phototherapy, and further mechanistic investigations will enhance its potential for future in-vivo 

studies. 
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