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Abstract. Rate equations are used to calculate the hyperfine state population dynamics of an
ensemble of ytterbium-171 ions in interaction with lasers. The application is to optimize the
efficiency and timescales of quantum control processes that we plan to use in the lab. The effect
of laser powers, polarisations and side-band carrier ratios for Doppler cooling and state preparing
are investigated.

1 Introduction
Trapped ions are a leading physical implementation of qubits which can be used in quantum computers offering
long coherence times, scalability and the ability to be precisely controlled using lasers [1]. This study is part of a
quantum control project with the long term aim to realise unsharp measurements between two weakly entangled
ytterbium ion isotopes, 171Yb` and 174Yb`, in a linear Paul trap [2].
The basic control processes that must be achieved in the laboratory are Doppler cooling, state preparation, state
detection and electron shelving. Doppler cooled reduces the temperature of the ions by cycles of absorption of
red-detuned laser photons and spontaneous emission. During state preparation the ion is optically pumped into the
qubit ground state. Electron shelving is achieved by populating and depopulating a long-lived metastable state.
State detection is achieved by pumping a closed-loop transition that produces measurable fluorescence. Additional
repump lasers are required to recover ions that have spontaneously decayed into dark states during the control
processes.
The Einstein rate equations are a set of coupled first-order differential equations describing the time-dependent
evolution of the ion’s hyperfine state populations. Rate equations are suitable to describe atom-laser interactions,
where the decay of the coherence between quantum levels is faster than the timescales on which we manipulate
them, as is the case in our system. [3]. We use a rate equation model to calculate the hyperfine state population
of 171Yb` during the quantum control processes that would be used in the experiment, to gain insights on how
to increase the efficiency and estimate timescales. The numerical model includes up to 60 atomic states and 11
experimental parameters. The model is used to inform parameter choices in the laboratory and understand the
timescales observed in the experiments.

2 Einstein rate equations
The interaction between an atom with states |iy and |jy and light that is close to resonance with the energy spac-
ing between these states is described using the Einstein coefficients A and B. Specifically, the term Aij (in s´1)
describes the spontaneous emission from a non-degenerate hyperfine state i to another single non-degenerate hy-
perfine state j. The term Bji describes stimulated emission and Bij stimulated absorption (both in J´1 ¨m3 ¨ s´2).

Using the Wigner-Eckhart theorem [3, 4], Aij can be written as

Aij “ AJ 1Jp2J 1 ` 1qp2F 1 ` 1q
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where dashes denote state |iy. The value k is the rank of the tensor operator involved, i.e. the rank of the electric
dipole operator is 1 and the rank of the electric quadrupole operator is 2. The quantum numbers in the expression
are F for the total angular momentum, mF for the magnetic quantum, J for the total electronic angular momen-
tum, I for the nuclear spin, and q can be interpreted as the projection of the photon angular momentum onto the
quantisation axis. AJ 1J is the total spontaneous decay rate from the excited term to the ground term. This expres-
sion includes the Wigner-6j symbol and Clebsch-Gordon coefficient to calculate the transition rates for each pair
of hyperfine states for different light polarizations.

The Einstein coefficient Bij is calculated using the relation between the Einstein coefficients, Aij “
ℏω3

J1J

π2c3 Bij .
We treat each atomic state individually, so that the degeneracy is 1 for all states, hence Bij “ Bji.
The generalized expression for a rate equation is,

dni
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pnjBjiP pωq ` njAji ´ niBijP pωq ´ niAijq, (2)

where N is the number of states in the model, ni represents the probability of finding the system in state |iy. The
term P pωq is the total energy density P pωq “
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ρpωqspωqdω in J ¨ m´3 ¨ s. The atomic line-shape is described

using a gaussian function spωq, centered around the atomic resonance frequency [3]. The laser spectral distribution
ρpωq is also modeled as a gaussian function of angular frequency ω and of laser properties such as laser intensity,
bandwidth and detuning.
We express the set of rate equations in equation 2 in matrix form d

dt n⃗ “ pM spont ` M stimqn⃗ and solve them
numerically in MATLAB using the ClebschGordan.m [5], Wigner6j.m [6] and Wigner3j.m [7] functions.

3 Results and discussion
The relevant 20 atomic states of 171Yb` are shown in Figure 1. The ground and excited qubit states in the
2S1{2 manifold are labeled |0y and |1y. The laser-driven transitions included in the model are numbered, with
the wavelength and sideband frequency indicated in the legend. The results of the rate equation model for a given
set of laser parameters is the population evolution of the 60 hyperfine states for a specified time.

Figure 1: 171Y b` level scheme with laser-pumped transitions (solid) and relevant decays (dashed). The wave-
lengths and sideband frequencies are indicated in the top left corner legend. The spontaneous decay rates for each
level are captured in the top right corner legend.

To achieve Doppler cooling transitions (3) and (2) are pumped by the 369 nm laser with a 14.7 GHz first order
upper sideband respectively to the 2P1{2 states (lifetime 8.12 ns) [8]. In the experiment the 369 nm laser is red
detuned by approximately 200 MHz so that it interacts most strongly (resonantly) with ions moving anti-parallel
to the direction of propagation of the laser. In the simulation on-resonance 369 nm light is used during Doppler
cooling to simulate these moving atoms interacting with resonant light due to the Doppler shift. Cooling takes
place when the ion undergoes sequential 2S1{2 ´2 P1{2 absorption-spontaneous emission cycles, that reduce the
ion’s momentum parallel to the laser beam. During cooling, a branching ratio of 0.5% from 2P1{2 to the long-lived
2D3{2 states (lifetime of 52.7 ms) removes ions from the cooling cycle. Figure 2 shows the the importance of the
repump laser during Doppler cooling. In the absence of the repump laser, population accumulates in the 2D3{2

states to a fraction of approximately 0.16 within 5 ps, whereas repumping maintains the 2D3{2 below a fraction of
0.01. This is important as ions in the 2D3{2 states do not participate in cooling, making the cooling inefficient.



Figure 2: Accumulation of population in the 2D3{2 states during Doppler cooling with and without 935 nm re-
pumping. The 369 nm cooling laser power was implemented using sideband and carrier power percentages at 5%
and 88.6%, respectively, of the total unmodulated carrier power, 48.4µW . The sideband percentage corresponds
to the 14.7 GHz sideband used during Doppler cooling. The 935 nm laser used sideband and carrier power per-
centages at 5.6% and 83.28%, respectively, of the total unmodulated carrier power, 0.49 mW. Both laser use equal
vertical and horizontal components.

Figure 3: (Left) Increase in the |0y state population during state preparation for different 369 nm laser sideband-
carrier ratios as measured in the laboratory and expressed as percentages of the total unmodulated carrier power,
48.4µW . The initial state used for all runs is the final state after Doppler cooling ions from a pure excited state
|1y for 50 ns. The 935 nm laser conditions were kept constant using both vertical and horizontal polarisation; and
sideband and carrier power percentages at 5.6% and 83.28%, respectively, of the total unmodulated carrier power,
0.49 mW. (Right) Enlarged section of graph.

Qubits are initialized by pumping into the |0y state using the 369 nm laser and a 2.1 GHz first order upper
sideband driving transitions (3) and (1) respectively (Figure1). Figures 3 and 4 show the population in the |0y

state as measure of the efficiency of state preparation under different laser parameters. Figure 3 shows that the
2.1 GHz sideband is essential to enable optical pumping into the |0y state. As sideband modulation increases,
second order sidebands increase in size — decreasing the power distributed between the first order sideband used
for our processes and the carrier beam. Figure 4 shows that the efficiency of state preparation depends on the laser
polarization, with mixed polarisation (equal vertical and horizontal polarization) giving the highest population after
0.2 µs. These results give an indication of the time needed for state preparation under ideal conditions that inform
the planning of experimental measurements.
The model was also used to confirm that the populations of the relevant states do not change during state detection
by driving transition (3) only.

4 Conclusions
The rate equation model makes it possible to understand the dynamics and time scales in relation to the exper-
imental parameters, such as laser powers and side band powers. The results are useful to inform decisions on
experimental parameters in our laboratory. Contradictory to what we expect, the differences between plots in both
figure 3 and 4 appear negligible. This is because our energy density quantity is large in all cases and partially



Figure 4: (Left) Increase in the |0y state population during state preparation for different 369 nm and 935 nm laser
polarisations in the presence of a vertical magnetic field. The sideband-carrier percentages of the total power for
the 369 nm laser were 13.6% and 67.9% respectively and the laser power at 48.4µW . The sideband percentage
corresponds to the 2.1 GHz sideband used during state preparation. The sideband-carrier percentages of the total
power for the 935 nm laser were 5.6% and 83.28% respectively and the laser power at 0.49 mW. (Right) Enlarged
section of graph.

saturates the transition. When reduced, changes in sideband power appear more noticeable. However, overall the
results have shown the importance of efficient 935 nm repumping, and that state preparation efficiency is positively
affected by the 2.1 GHz modulation and is marginally faster with a combination of both vertical and horizontal
polarisation. We are also able to gauge how long state preparation takes under ideal circumstances. A current
limitation of the model is that Zeeman shifts due to the external magnetic field has not been implemented yet.
Future work includes modeling of a 411 transition from 2S1{2´2 to 2D5{2, which is a quadrupole transition into a
metastable state, using the Optical Bloch Equations [9].
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