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Abstract. We present a derivation of the thermal partition function in scalar thermal field the-
ories with an emphasis on finite-size effects. By carefully transitioning from the Hamiltonian
operator formalism to the path integral using coherent states, we obtain corrections to the parti-
tion function that expose vacuum structures. These corrections are rarely discussed in previous
literature.

1 Introduction

Understanding the behavior of matter under extreme conditions — such as those present in the early universe or
recreated in heavy-ion collisions — is a central goal of high-energy physics. In particular, the study of the Quark-
Gluon Plasma (QGP) provides deep insights into the early universe and the dynamics of strongly interacting matter.
A powerful framework for investigating such systems is Thermal Field Theory (TFT), which extends Quantum
Field Theory (QFT) to finite temperature and density. TFT is widely used in high-energy physics, nuclear physics,
and cosmology, and plays a crucial role in describing phenomena such as cosmological phase transitions, thermal
particle production, and QGP formation in heavy-ion collisions at RHIC (Brookhaven National Lab) and the LHC
(CERN). It is also an essential tool in lattice QCD studies of the QCD equation of state and in modeling dense
astrophysical systems such as neutron stars and their mergers. Recent applications of TFT include finite-size effects
and Casimir physics at finite temperature [1, 2, 3, 4]. For comprehensive reviews of TFT, see e.g. [5, 6, 7, 8, 9].

A key quantity in TFT is the thermal partition function, which encodes the equilibrium statistical properties of
quantum fields. Here, we focus on the path integral formulation of the partition function in a scalar field theory
and present recent results obtained from a careful construction of the path integral using coherent states [10]. The
standard treatments in TFT derive the path integral representation of the partition function by inserting decompo-
sitions of unity 1 = [ d¢ |p)¢| and 1 = [ dr |7)(r| using eigenstates of the field operator and its canonically
conjugate momentum, ¢ |¢) = ¢ |¢), 7 |x) = 7 |7). While the use of these unities makes the derivation of the path
integral straightforward, it is unclear how these eigenkets and, especially, the integrals over them, are defined. In
our derivation, we rather use well-defined coherent states.

Of special mention in our derivation is the connection between coherent states in the field basis with coherent
states in the ladder basis; deferring the details for now,
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Through this derivation, we show that the vacuum energy contribution to the action arises naturally in the path
integral of the free theory when the Hamiltonian is expressed in terms of ladder operators. We then extend the use
of coherent states in the field-operator basis to the interacting theory. For the interacting case, we find, alongside
the vacuum energy, a novel contribution to the action: a vacuum bubble that acts as a mass correction.

2 Motivation

The final goal that motivated this research was to analytically compute next-to-leading order (NLO) finite-size
corrections to the QCD equation of state. Understanding these corrections is of growing importance across a wide
range of physical systems, as discussed in the introduction 1, where the thermodynamic limit is applicable.

The reason we are interested in the influence of finite system size on the thermodynamic and statistical prop-
erties of the QGP is mainly because this is a largely unexplored area of research. The Casimir effect, predicted
by Dutch physicist Hendrik Casimir for electromagnetic systems in 1948 [11], provides a striking example of how
confinement in finite volumes can induce measurable modifications to physical observables. Figure 1 shows ex-
perimental measurements from [12], illustrating that Casimir forces are detectable at length scales on the order of
200 nm. While the effect is relatively small at such distances, its magnitude increases significantly as the system
size decreases, becoming comparable to atmospheric pressures around 10 nm.
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Figure 1: Casimir Force plot. Figure adapted from [12].

Given that the QGP formed in heavy-ion collisions occupies volumes on the scale of a nucleus, these finite-size
corrections to thermodynamic quantities such as pressure and energy density may be significant. For example, [2]
shows that even in a simple, non-interacting massless scalar field theory, finite volume effects induce substantial
deviations in thermodynamic observables. Such corrections could alter the QGP equation of state and, conse-
quently, affect key transport properties like 77/s. Importantly, the sign and magnitude of these finite volume effects
remain largely unexplored, raising the possibility that the QGP might exhibit different fluidity characteristics at
finite system size than those inferred from infinite volume approximations. This motivates a systematic study of
finite size effects on the thermodynamics and hydrodynamics of the QGP.

The path toward this ambitious goal involves several intermediate steps. As a first step, we have computed the
partition function of an interacting ¢* theory in a finite volume at finite temperature. Subsequent steps include
computing the equation of state and the trace anomaly for a range of interacting quantum field theories in finite
volumes. Starting with scalar theories such as ¢*, we will gradually advance to more complex systems, including
fermionic theories, spin systems relevant to condensed matter physics, and ultimately, QCD. Each step serves both
as a validation of our methods and as a bridge toward applications in realistic settings.



The relevance of these results extends to numerical simulations as well. In particular, the analytical finite-size
corrections computed here can serve as benchmarks and guiding insights for Lattice QCD simulations, where vol-
ume effects must be carefully controlled and interpreted. More broadly, this line of research aims to enhance our
theoretical understanding of quantum fields in confined geometries, offering deeper analytical control over models
that underpin many frontier topics in high-energy and condensed matter physics.

3 Results

All derivations in this section are performed in discretized spacetime. However, for readability, we present the
results directly in their continuum-limit form. A number of technical subtleties are omitted for brevity. For a more
detailed and rigorous treatment, we refer the reader to Ref. [10].

3.1 Free Theory Partition Function

For the sake of simplicity, we start to examine a free massive single component scalar field theory in n + 1
dimensions. The weak A¢* interactions for this classical real scalar theory will follow later on. Due to the thermal
system, the discretization even in equilibrium is non-trivial. The Lagrangian for the considered theory' is

L= %(%(b@"(b — %m2¢2, (3)
¢*(t,x) = ¢(t,x).

In our scalar field theory, we assume that the vacuum expectation value of the scalar field is zero, (¢(¢,x))o = 0,
as is typical for scalar theories in thermal equilibrium without spontaneous symmetry breaking.
The Hamiltonian is obtained via a Legendre transform,
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In order to construct the path integral formulation function of the partition function in a controlled way, we
start with the trace over the thermal density matrix,

Z =Tr{e "M}, 4)

where 5 = %

Applying trotterization [13], we divide the partition function in eq. 4 into N — oo segments and insert com-
plete sets of coherent states in between each segment to find the thermal trace trotter formula (for further details,
see Ref. [10])
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By evaluating the matrix elements in Eq. 5, and performing a well-motivated change of variables followed by a
Fourier transformation, we obtain a path integral over field configurations weighted by the exponentiated Euclidean
action. A careful treatment of this procedure reveals that the vacuum energy contribution emerges naturally as part
of the path integral. Although the full derivation involves several subtleties, the resulting path integral expression
for the thermal partition function in the free theory takes the form
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'We work with the mostly-minus metric in D = n + 1 Minkowskian spacetime; 77%/ = diag(+1,—1,---,—1), use natural units
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3.2 Interacting ¢* Theory Partition Function

When interactions are included, we will show that some vacuum expectation values (VEV) arise that couple to
the other terms in the Lagrangian and modify the structure of the counterterms. We start with the bare scalar ¢*
Lagrangian in D = n + 1 dimensions and with the coupling constant A,
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and renormalize using multiplicative renormalization. We define
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Inserting the renormalized parameters from eq. 9 into the bare Lagrangian, eq. 8 yields
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Performing a Legendre transform then gives the renormalized Hamiltonian,
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Going through the same procedure as for the free theory, we start off with the trace over the thermal density
matrix of the renormalized ¢* theory, trotterize, insert complete sets of coherent states and compute the matrix ele-
ments. This process reveils the following form of the path integral partition function of the renormalized interacting
¢* theory:
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In the path integral of eq. 12, we have found the usual Euclidean action, the VEV of the Hamiltonian, but notable
exception from the literature arises from the coupling between the VEV (0] ¢? |0) and the classical field configu-
rations ¢2. This coupling introduces a nontrivial correction to the mass counterterm and marks a key distinction
from the standard path integral formulations in the literature where such couplings between operator VEVs and
classical fields are absent.



4 Conclusions and Outlook

In this work, we systematically derived the path integral formulation of the thermal partition function for a scalar
quantum field theory from first principles. We began by constructing the partition function for a free scalar field
theory using well-defined field-theoretic coherent states. In contrast to the ill-defined resolutions of unity used in
the standard literature, based on eigenstates of field operators, we employed rigorously defined coherent states to
formulate the path integral.

We provided an explicit connection between coherent states in the ladder operator basis and those in the field
operator basis. This mapping is crucial for deriving the path integral formulation of the interacting theory partition
function and, to our knowledge, has not been presented elsewhere. In both the ladder operator basis, and the field
operator basis, the vacuum energy emerges explicitly through the matrix element of the Hamiltonian with coherent
states. In both approaches, we obtained an identical, well-defined path integral representation of the partition
function as a finite product of integrals over real numbers. This includes the familiar Euclidean action as well as
an explicit vacuum expectation value (VEV) of the Hamiltonian, absent from traditional treatments.

We then extended our formalism to the interacting ¢* theory using the field-basis coherent states. In this case,
we found two novel contributions in the exponent of the partition function: (i) the VEV of the full Hamiltonian
and (ii) a second VEV coupling the vacuum bubble (O|¢32 |0) to the mass term ¢2. These terms are not present in
any standard derivation and emerge before integration over conjugate momenta, pointing to their structural origin
in the path integral formulation.

Given that traditional treatments miss these VEVs, we are led to question the validity of assuming a resolution
of the identity via 1 = [ d¢ |¢)¢| and 1 = [ dr |7)(x|. In particular, we have found no rigorous construction in
the literature for defining the identity operator in terms of field eigenstates. We suspect this assumption is the root
cause of the discrepancy.

Whether these additional VEVs have physical consequences remains an open and intriguing question. Consider
first the VEV of the Hamiltonian. While often regarded as physically irrelevant, this term plays a central role in
the Casimir effect, where energy differences between confined and infinite-volume vacua manifest as measurable
forces. Additionally, in gravitational theories, this VEV could contribute to an effective cosmological constant.

The second VEV, which couples to the mass term, implies that the effective mass depends on the system’s finite
size. This could have significant consequences for physical observables, especially in systems with spontaneous
symmetry breaking (SSB). In such scenarios, even more vacuum diagrams could couple to the theory: the tadpole,
for example, might couple to a ¢® term, and the three-point (Mercedes) diagram to a ¢ term. Furthermore, the sign
of the vacuum correction is not guaranteed, if negative and sufficiently large, it could induce SSB even if the bare
mass is positive. Such a shift would impact phase structure, thermodynamic quantities like pressure, energy and
entropy density, the speed of sound, and the trace anomaly.

Looking forward, our approach provides a concrete foundation for computing higher-order corrections to ther-
modynamic observables in both infinite and finite volumes. This enables systematic investigations of how finite-
size effects modify the equation of state and trace anomaly in scalar field theories [3, 4]. These studies offer an
ideal testbed for later extensions to fermions and gauge fields. In particular, carrying out an analogous construc-
tion in Quantum Electrodynamics (QED), and ultimately in Quantum Chromodynamics (QCD), would allow for
nonperturbative evaluation of finite-volume corrections to the QCD equation of state. Such corrections could have
significant implications for lattice QCD simulations [14, 15, 16] and for the interpretation of signals of quark-gluon
plasma formation in small systems. They may also impact observables sensitive to conformal symmetry breaking
[17, 18], such as flow in small heavy-ion collisions [19] or energy-energy correlators [20, 21, 22, 23], which are
increasingly being explored as precision probes of the QGP.
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