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Abstract. Gamma (y)-ray spectrometry remains a cornerstone technique in nuclear science and
environmental radioactivity assessment, offering precise identification and quantification of ra-
dionuclides. Despite its efficacy, conventional analytical methods often rely on manual process-
ing, which can introduce subjectivity, reduce throughput, and hinder real time analysis. In this
study, an automated framework is proposed for vy-ray spectrometry by employing two advanced
deep learning architectures: Convolutional Neural Networks (CNN) and Kolmogorov—Arnold
Networks (KAN). The models are trained and evaluated using high resolution spectral datasets
acquired from ERL hyper pure germanium (HPGe) OF iThemba LABS detector. Input features
include energy, channel, peak area, and centroid, extracted through digital signal processing
techniques. Model performance is assessed based on standard classification metrics such as ac-
curacy, precision, recall, and F1-score, allowing for a comparative evaluation of the CNN and
KAN methodologies in terms of classification robustness and generalization capability. This
work aims to demonstrate the potential of deep learning for automating y-ray spectrum interpre-
tation, thereby enhancing the efficiency, reproducibility, and scalability of nuclear measurement
systems. Detailed performance comparisons and implications for real world deployment will be
discussed during the presentation.

1 Introduction

Gamma (y)-ray spectrometry is a fundamental tool in nuclear science, environmental monitoring, and radiological
protection[1]. It allows for the precise identification and quantification of radionuclides by analyzing the energies
and intensities of emitted  rays. This technique has been extensively used in applications such as radioactive
waste characterization, nuclear forensics, medical imaging, and environmental radiation assessments. Despite its
accuracy and utility, conventional «y-ray spectrum analysis remains heavily dependent on manual procedures or ba-
sic rule based algorithms, both of which can be limited in speed, scalability, and consistency[2]. The typical y-ray
spectrum consists of a continuous background superimposed with discrete peaks corresponding to specific energy
transitions in radioactive isotopes. Accurate interpretation requires precise peak identification, energy calibration,
and nuclide classification, all of which are vulnerable to human error or measurement uncertainties[3]. Variations
in detector resolution, noise, or overlapping peaks often introduce additional complexity, necessitating advanced
computational techniques that can robustly handle such challenges.

In recent years, machine learning, particularly deep learning, has emerged as a transformative solution for pat-
tern recognition and automated data processing. Convolutional Neural Networks (CNN), a class of deep learning



models, have proven highly effective in image and signal classification tasks due to their ability to automatically
extract hierarchical features from input data[4]. When applied to y-ray spectra, CNN can learn to detect and dis-
tinguish subtle spectral features, even in noisy or distorted data, without the need for handcrafted preprocessing
pipelines[4, 5].

Kolmogorov—Arnold Networks (KAN), a newer addition to the machine learning landscape, offer a pow-

erful and theoretically grounded approach for modeling complex nonlinear functions[6]. Based on the Kol-
mogorov—Arnold representation theorem, KAN use piecewise polynomial operations instead of traditional neural
network activations, providing greater interpretability and control over model behavior. In v-ray spectrometry,
KAN show potential for precise energy calibration, spectral denoising, and function approximation tasks that re-
quire smooth, high fidelity mappings[7]. The integration of CNN and KAN offers a compelling opportunity to
revolutionize vy-ray spectrometry. CNN excel at learning discriminative features from the spectral data, enabling
robust peak detection and classification, while KAN complement this with accurate modeling of energy relation-
ships and other continuous properties[8, 9, 10]. Together, these models can form a synergistic framework that
automates the entire spectrometric analysis process, from raw data input to final radionuclide identification, with
minimal human intervention.
This paper presents a novel methodology that combines CNN and KAN architectures to enhance the efficiency and
accuracy of vy-ray spectrum analysis. We demonstrate how this dual model approach can outperform traditional
techniques in terms of sensitivity, speed, and adaptability across various operational scenarios. By applying this
integrated deep learning framework, we aim to contribute toward the development of intelligent, scalable, and real
time radiation monitoring systems that meet the demands of modern nuclear science and environmental safety.

2 Methodology

2.1 Data

Spectral data were collected from five commonly studied radionuclides: *°K, '37Cs, '3?Eu, ??Na, and *°Co. Each
v-ray spectrum consisted of 8192 channels, representing uncalibrated count values. These channels capture the
photon interaction frequencies recorded by the ERL Hyper Pure Germanium (HPGe) detector AT iThemba LABS,
with each channel corresponding to a discrete signal intensity proportional to the incident y-ray energy. The dataset
was constructed to ensure a diverse representation of peak structures and energy ranges, allowing for effective
model training and validation.

2.2 Calibration and Key Equations
To convert raw channel values into corresponding energy values (in keV), linear energy calibration was performed
using the following equation:

E =a+b-Channel €))
where:

* F is the energy in keV, a and b are the calibration constants determined from known reference peaks[11].
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Figure 1: ~-ray spectra of >?Eu before (left) and after (right) energy calibration. The calibration process maps
channel numbers to their corresponding energy values (keV), enabling accurate peak identification.



The centroid of a photopeak is used to accurately identify the peak position in the energy spectrum. It is
calculated using a weighted average of energy values as:

> EiNi
Zi N;

where E; is the energy at channel ¢, and NV, is the corresponding count at that channel. This equation ensures
the most probable energy associated with the peak is used for identification[12].
Model performance was quantitatively assessed using classification accuracy, calculated as:

Accuracy = TP+ TN €))
Y= TPYTN+FP+FN

2

Centroid =

where:

e TP =True Positives, T'N = True Negatives, ' P = False Positives, ' N = False Negatives[13].

2.3 Peak Fitting
After calibration, prominent photopeaks in the energy spectrum were analyzed through curve fitting to extract
precise peak characteristics. Each peak was modeled using a Gaussian function of the form:

FE) = A exp (—(E‘“)Z) @

202
where:

¢ A is the amplitude (peak height), i is the mean (centroid of the peak), o is the standard deviation [14].
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Figure 2: Gaussian peak fitting applied to the calibrated y-ray spectrum of '32Eu.

This fitting process allows for improved resolution in identifying overlapping peaks and provides accurate
estimates of energy and intensity, which are critical for nuclide classification and quantitative analysis.



2.4 Model Training and Deployment

Following preprocessing and peak fitting, the data were split into three subsets: 75% for training, 15% for valida-
tion, and 10% for testing. The training set was used to optimize model weights, while the validation set monitored
generalization performance to prevent overfitting. The final evaluation was conducted on the test set to assess the
model’s real world effectiveness.

Both CNN and KAN were trained using supervised learning techniques. The CNN focused on peak classifi-
cation and isotope identification, while the KAN were applied to regression tasks such as precise energy mapping
and calibration. After training and evaluation, the models were deployed into an integrated analysis pipeline. This
system accepts raw spectral input, performs automated preprocessing and calibration, detects peaks, and provides
real time predictions of radionuclide identity and intensity. The deployment enables continuous, scalable, and
interpretable ~y-ray spectrum analysis with minimal human intervention.

3 results and discussion
3.1 Evaluated results
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Figure 3: Confusion matrices illustrating the classification performance of the CNN model (left) and the KAN
model (right) on gamma-ray spectra of five radionuclides: 60Co, 137Cs, 152Ey, 22Na, and *°K. Each matrix shows
the predicted labels along the horizontal axis and the true labels along the vertical axis. Diagonal elements repre-
sent correct classifications (true positives), while off-diagonal elements indicate misclassifications, including false
positives and false negatives. False negatives appear when a true radionuclide is incorrectly predicted as another
class, impacting recall, while false positives occur when a model incorrectly assigns a radionuclide label to a non-
matching input. The CNN and KAN models both demonstrate strong classification ability, with KAN showing
slightly better separation for isotopes with overlapping spectral features.

Table 1: Evaluation metrics for CNN and KAN models on radionuclide classification

Perfomance (%) CNN KAN
Accuracy 68 70
Area Under Curve (AUC) 91 89
Precision 69 68
Recall 67 69

F1-Score 67 68




3.2 Deploying the results
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Figure 4: Screenshot of the deployed Gradio dashboard for automated gamma-ray spectrum analysis. The interface
allows users to upload raw spectral data, perform energy calibration, and receive isotope identification results.

The results of this study demonstrate that integrating CNN and KAN enables robust, automated analysis of
~-ray spectra. The models were able to accurately classify isotopes and calibrate energy spectra, showing superior
performance compared to traditional peak picking algorithms. The success of the framework lies in its ability to
model nonlinear features and generalize across different spectrum patterns, even in the presence of overlapping
peaks or noise. For deployment, the trained models were integrated into an interactive Gradio based dashboard.
This interface allows users to upload raw spectral data consisting of only channel numbers and count values. Upon
uploading, the dashboard performs energy calibration using the trained model

In one test case using an uploaded spectrum sample, the system correctly detected a single peak corresponding
to “°K at 1460 keV and another peak initially matching '>?Eu. However, due to the presence of only one peak
attributed to '3?Eu, the model did not conclusively identify it as the source, in agreement with the known charac-
teristic that '>?Eu emits multiple distinct peaks. This example highlights the model’s sensitivity and interpretative
accuracy, as it recognized that a single peak is insufficient for confirming '>*Eu, while confidently detecting “°K,
which is characterized by a dominant single peak at 1460 keV.

4 Conclusion

In this study, we demonstrated that the combined use of CNN and KAN offers a powerful and automated ap-
proach for y-ray spectrum analysis. The models significantly outperformed traditional peak picking methods in
accurately classifying radionuclides such as ®*Co, '*’Cs, 2’Na, '3?Eu, and “°K. Both CNN and KAN architectures
proved capable not only of detecting and classifying photopeaks but also of performing energy calibration with
high precision, aligning closely with expected values for known isotopes. Quantitative evaluation using metrics
such as accuracy, confusion matrix, precision, recall, F1-score, and AUC confirmed the robustness and reliability
of the proposed framework. The dashboard’s ability to both calibrate unprocessed spectra and classify radionu-
clides enhances accessibility and application in real world scenarios, such as environmental monitoring and on site



nuclear analysis. By transforming raw input data into calibrated, labeled spectra with minimal user interaction,
this system presents a practical and scalable solution for gamma spectrometry tasks. These results underscore the
potential of deep learning techniques to enhance the efficiency, accuracy, and automation of ~-ray spectrometry,
offering scalable solutions for real time nuclear monitoring and environmental radiological assessment.
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