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Abstract. We present here an analysis of probe quark behavior in a thermal Quark-Gluon
Plasma via the AdS/CFT correspondence, modeling them as string endpoints with specific bound-
ary conditions. We study both heavy (on-mass-shell) and light (off-mass-shell) quarks initially
at rest, exploring analytic solutions where possible and using Wolfram’s Mathematica for nu-
merical solutions elsewhere. This enables comparison and verification. Due to difficulties in
obtaining these numeric string solutions, we also examine numerical solutions for a point par-
ticle in the same spacetime geometries as a simpler test case. Although not all objectives were
achieved, we present our findings, discuss limitations, and outline future research directions.

1 Introduction
The study of Quark-Gluon Plasma (QGP) advances our understanding of the quantum universe, especially the
strong force and particle dynamics. Found in heavy ion collisions at RHIC and LHC, QGP is a complex, deconfined
state of matter that challenges previous assumptions of a gas-like behavior, as evidenced by anisotropic momentum
distribution (known as elliptic flow, [1, 2]). Both weak and strong coupling regimes are supported: perturbative
QCD effectively predicts high transverse momentum observables [3] assuming weak coupling, while near-ideal
hydrodynamics describes low transverse momentum observables [4, 5] assuming strong coupling.

Our investigation focuses on probe quarks interacting with QGP, modeled via AdS/CFT as strings in a String
Theory. We aim to solve the string equations of motions allowing us to analyze the mean and RMS displacements of
string endpoints, reflecting probe quark motion. Due to limited analytic solutions, we develop numerical solutions
in Wolfram’s Mathematica, validating with known cases. Additionally, we examine motion of point particles in
the same spacetime geometries as a simplified approach to inform our methods and address challenges in the full
string analysis.

2 The String Case
2.1 Theory
As established in Section 1 , we are ultimately interested in solving the equations of motion for a string in Anti-
de Sitter or AdS spacetime for the purposes of connecting this motion to that of a probe quark via the AdS/CFT
correspondence [6, 7]. More specifically, we want to solve the equations of motion arising from the Polyakov [8,
9, 10, 7] action,
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where T is the string tension, M is the worldsheet of the string with coordinates σa “ pτ, σqa and volume element
d2σ “ dτdσ (indexed with Latin indices to distinguish them from target spacetime objects, which are indexed with



Greek indices), Xµ “ Xµpτ, σq are the coordinates of the string (to be understood as mapping functions from the
string worldsheet to the target spacetime), γab “ GµνBaX

µBbX
ν is the metric induced on the worldsheet by the

pullback of the target spacetime metric Gµν along the mapping functions Xµ, hab is the metric on the worldsheet
itself (with inverse hab and determinant h), and natural units are used unless otherwise stated. The equations of
motion resulting from the extremization of (1) are

∇aΠ
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where Πa
µ “ ´ThabGµνBbX

ν are the canonical momentum densities obtained from the action (1) via the usual
procedure, Γα

µν are the usual Christoffel symbols of the target spacetime metric Gµν , and ∇a is the covariant
derivative on the string worldsheet from the Levi-Civita connection associated with the worldsheet metric hab.

Our goal is to solve these equations of motion for two cases of open strings, the first with both endpoints fixed
(corresponding to a heavy, on-mass-shell probe quark) and the second with one endpoint fixed and the other free
(corresponding to a light, off-mass-shell probe quark), and we will refer to these two cases as the “heavy” and
“light” cases respectively [7, 11]. Ultimately we want to consider the AdS5 ˆ S5 spacetime geometry as this is
dual to N “ 4 Super Yang-Mills CFT1, however no analytic solutions exist in this case. We will therefore consider
the simpler spacetime geometry of AdS3´Schwarzschild, where analytic solutions to equation (2) are present2.
This will allow us to compare the obtained numeric solutions to these analytic solutions in order to establish the
validity of our numeric solutions before proceeding to the more complex spacetime geometry.

2.2 Numeric Results
Making use of the NDSolve function build into Wolfram’s Mathematica to numerically solve equation (2) in the
above established spacetime geometry, we are able to obtain numeric solutions in both the heavy and light cases.
Figure 1 shows parametric plots of the radial component X1pτ, σq “ rpt, σq of these solutions in the static gauge,
along with plots of the corresponding analytic solutions.

The plots in Figure 1 show good agreement for the heavy case but significant deviation for the light case.
Notably, the light case exhibits non-physical behavior: the shaded region in plot 1d indicates the string endpoint
folding over itself, leading to that endpoint falling inwards faster than the analytic solution’s inward fall at the
local speed of light. This implies the numeric endpoint exceeds the local speed of light. The deviations are around
one-tenth of the string length — much larger than numerical error alone could account for.

Due to these issues with obtaining a numeric solution for the string that agrees with the analytic solution,
and being unable to remedy this issue via the usual approaches3, we will instead consider the simpler problem of
numerically solving for the motion of a point particle in the same spacetime geometry.

3 The Point Particle Case
3.1 Theory
The trajectory of a point particle is known as a geodesic of the spacetime it exists within. These geodesics can
be understood as generalisations of the notation of a straight line[13, 14]; they are the paths that extremize the
invariant spacetime interval between two events, analogous to how straight lines extremize the Euclidean distance
between two points. Following this logic, we extremize the length functional

I “

ż

dλ

c

´Gµν
dxµ

dλ

dxν

dλ
“

ż

dλ
a

´ 9x2, (3)

where 9xµ “ dxµ

dλ , and the square of a vector is shorthand for the contraction of the vector with itself by the metric.
From the functional (3) we derive the geodesic equation [13]
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for a trajectory xµpλq parameterised by an arbitrary (affine) parameter λ. In deriving equation (4), we have consid-
ered the parameterised path xµpλq as an object in its own right, rather than as the physical trajectory of a particle,

1In the appropriate limiting cases, this field theory provides a good approximation for QCD [6, 12]
2Though these analytic solutions are derived by making use of the static (X0pτ, σq “ τ ) and conformal (hab “ ηab “ diagp´1, 1q)

gauges.
3Specifically, neither re-forming the equations of motion nor adjusting the Working Precision, Accuracy Goal, Precision Goal, and/or Grid

Spacing options supplied to NDSolve are able to resolve the numeric problems.



(a) Analytic String solution for the heavy Case (b) Analytic String solution for the light Case

(c) Numeric String solution for the heavy Case (d) Numeric String solution for the light Case

Figure 1: Parametric plots of the analytic (top) and numeric (bottom) string solutions in both the heavy (left) and
light (right) cases. These plots show the full spacial extent of the string on the vertical axis, plotted over time on
the horizontal.

but the switch to the latter is simple enough: We can take the action for a massive, relativistic point particle as
simply being proportional4 to the length of its worldline [13, 14, 10],
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This action (5) is the point particle analogue to the Nambu-Goto action5 for the string.
We can additionally consider the einbein action [8],
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where e “ epλq is this new einbein object, an additional degree of freedom introduced in analogy to the intrinsic
worldsheet metric6 introduced in equation (1). This action (6) maintains reparameterisation invariance without the
square root of equation (5) and applies to both massive and massless particles, unlike the Sm action which only
works for massive particles. Additionally, a third point particle action can be derived by simplifying the length
functional (3): by taking advantage of the monotonicity of the square root function we can, by “squaring” the
functional I , obtain a new length functional I2 and an associated action S2 [13],

I2 “

ż

dλ Gµν
dxµ

dλ

dxν

dλ
“

ż

dλ 9x2 ùñ S2 “ m2

ż

dλ Gµν
dxµ

dλ

dxν

dλ
“ m2

ż

dλ 9x2, (7)

4The proportionality constant must clearly have dimensions of energy to ensure that this new functional (5) does actually have the dimen-
sions of action, and what better to use than the mass of the particle being a constant property of it. The negative sign is then needed to ensure
we recover the correct non-relativistic limit to the action.

5SNG “ ´T
ş

d2σ
a

´detpγabq, where γab is the induced metric on the string worldsheet, as in equation (1). This action is proportional
to the area traced out by the string worldsheet.

6This analogy runs deeper than it at first appears, as equation (6) can be recast to show that the e acts as a one-dimensional metric on the
worldline of the particle [8].



completely analogously to how the action Sm was obtained from the functional I . This action (7) is mathematically
simpler, but this simplicity comes at the cost of reparameterisation invariance; we have effectively fixed the proper
time parameterisation for our worldline in using the S2 action [13]. Additionally, this action is also only valid for
massive particles, much like the Sm action. For the massless case, we do have one additional method to solve
for the trajectory of the particle aside from the extremization of equation (6) or the direct use of the geodesic
equation (4), and this is to make use of the fact that massless particles must travel on lightlike or null trajectories.
These trajectories satisfy 9x2 “ 0 which, by making use of the static gauge x0pλq “ tpλq “ λ, gives us a first order
differential equation that can be solved to find x1pλq “ rpλq.

The equations of motion arising from all three actions7 can be written as

D

dλ
πpiq
µ “ 9xν∇νπ

piq
µ “ 0, (8)

where i P tm, e, 2u is the same label as the subscript on the associated action, D
dλ “ 9xν∇ν is the parallel transport

operator [13], and π
piq
µ is the canonical momentum obtained from the corresponding action via the usual procedure.

All the difference arising from the specifics of the different actions are contained within the different canonical
momenta. In the case of the einbein action, we additionally need to consider the equations of motion for the
einbein itself, which come out to be a constraint equation. These canonical momenta and this constraint equation
are given in equations (9) and (10) respectively.
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In all cases, we will use the initial conditions xµp0q “ ptp0q, rp0qqµ “ p0, 1qµ and 9tp0q “ 1. In the massive
case, we will then use 9rp0q “ 0 and solve equation (10) to obtain possible values for ep0q, while for the massless
case we will obtain 9rp0q from the other initial conditions to place the particle on a null trajectory at λ “ 0.
We will then attempt to numerically solve all versions of equation (8) from the different actions, variations on
reforming these equation, variations on the form of equation (10) in the einbein case as well as its derivative,
and with the options of ´1, 0, or 1 for 9ep0q in either case and ep0q in the massless case. This leads to a huge
number of different potential configurations for the numeric solutions which will be run via NDSolve and, once
non-physical solutions have been ruled out8, these solutions will be compared. Table (1) shows the final counts
of the number of solution configurations, the number of non-physical solutions, the number of solutions that were
not able to be solved, and the final count of remaining numeric solutions both in Minkowski spacetime and in two
coordinate systems9 for AdS3´Schwarzschild spacetime [7, 11]. In all cases, we will take the metric to have the
form ds2 “ ´fprqdt2 ` gprqdr2, which allows us to recover all three cases by the forms of fprq, gprq10.

3.2 Numeric Results
Due to the large number of variations on the solutions, it is not possible to generate a meaningful plot showing all
the solutions and how they compare with each other. We have therefore instead opted to consider comparisons of
individual solutions against one particular selected solution. Figure 2 shows this comparison between the solution
obtained from the geodesic equation11 and a sample solution12 generated using the equations of motion arising
from the einbein action (6), in the form of a ratio13 between the two solutions.

7That is, from Sm in equation (5), from Se in equation (6), and from S2 in equation (7).
8Solutions are deemed non-physical and ruled out if they either do not satisfy at least one of the initial conditions laid out above, or else if

the solution for the time coordinate has 9tpλq ă 0, as time must be an increasing function.
9Those being the usual pt, rq radial coordinate system, which we will refer to as “AdS” coordinates, and the tortoise coordinates pt, r˚q

which transform the radial direction to put the metric into a conformally flat form where it is proportional to the Minkowski metric, and which
we will refer to as such.

10Minkowski spacetime corresponds to fprq “ gprq “ 1, AdS3´Schwarzschild spacetime in AdS coordinates by fprq “ 1
gprq

“ fAdSprq

and in tortoise coordinates with fprq “ gprq “ fTortprq; where fAdSprq and fTortprq are the usual AdS3´Schwarzschild blackening factor
in AdS and tortoise coordinates respectively

11For numeric reasons, the geodesic equation with lower µ index is preferred
12In both cases, the derivative of the einbein constraint equation (10) has been used rather than the constraint equation itself, and the same

form of this equation is used in both cases. No initial conditions for 9e were given, and the initial condition ep0q “

?
fprp0qq

m
was used in the

massive case, while the initial condition ep0q “ 0 was used in the massless case.
13As shown in the axes labels of figure 2, it is not just the ratio of the two solutions that are plotted but the difference between this ratio and

one, so that perfect agreement is given by zero.



Minkowski AdS Tortoise Final Count
M Ml M Ml M Ml M Ml Total

Initially 12 18 180 244 180 244 372 506 878
Failed to run 0 2 128 125 115 238 243 365 608
Non-physical 0 0 34 39 40 3 74 42 116

Finally 12 16 18 80 25 3 55 99 154

Table 1: Counts of the number of solutions available, computed, and ruled out, in Minkowski spacetime and in
AdS and tortoise coordinates for AdS3´Schwarzschild spacetime. The column labels “M” and “Ml” refer to the
massive and massless particle cases respectively.
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Figure 2: Ratio plots showing the comparison between the geodesic equation and a specific solution of the einbein
equation of motion in AdS coordinates, which we will take as a representative example of the comparisons between
solutions.

From the plots shown in figure 2, we see good agreement between the solutions in both cases — the plots have
the same scale on the vertical which is of the order „ 10´7, much smaller than any length scale present in the
problem (given by rH “ 0.3 and rp0q “ 1).

Figure 2 compares a small subset of solutions; while most align on similar scales, some pairs show large
discrepancies, indicating at least one solution is incorrect. By scoring each solution, we identify patterns and
conditions under which solutions perform best; taken here to mean those that agree14 with the most others. In
the massive case, einbein equations of motion (using the derivative of the constraint and initial conditions for
e) perform best, with some variations in the exact form of the equations and initial conditions across coordinate
systems. Notably, solutions from the massive actions (Sm and S2) all fail or are physically invalid, suggesting
the solver struggles with these equations or that they contain subtle issues. In the massless case, null methods
excel, followed by direct use of the geodesic equation. In tortoise coordinates, einbein solutions fail or are invalid,
but in AdS coordinates, they yield physically meaningful results—particularly when configurations mirror those
successful in the massive case—highlighting the potential significance of this specific configuration choice.

4 Conclusions and Outlook
From the analyses presented in Section 3.2, we can see that there is no choice of action for which the resulting
equations of motion numerically perform best in all cases. Instead, the closest we have is that the geodesic equa-
tion (4) arising from the extremization of the length functional (7) seems to show good results in all cases, although
it is not best performing in any of them. We also see that the usual massive point particle actions (5) and (7) do
not result in equations that are numerically solvable; and while the einbein action (6) results in equations that are
numerically solvable in most cases, they are not in all cases and even in the cases where they are, the solutions can
be incredibly sensitive to the exact form of the constraint equation (or its derivative) and the choice of initial con-
ditions for e and/or 9e used. Potential directions to pursue in the future include a more detailed examination of the
reasons for why certain actions do not result in numerically solvable equations of motion, and why this sometimes

14Where we are taking agreement to mean no deviations larger than the arbitrarily chosen cutoff value of 10´5



depends on the coordinate system used. Additionally, there is also the question of why the einbein solutions are so
sensitive to initial conditions of the non-physical degree of freedom and the form of the constraint equation used
for this degree of freedom, as well as if this sensitivity or the issues in obtaining numeric solutions are resolved by
changing the precision or accuracy parameters of NDSolve. Finally then, since the geodesic equation shows good
numerical solutions in all cases, it is potentially worth exploring a new comparison methodology of comparing all
solutions to the geodesic equation rather than to all others, and if it is possible to obtain an analytic solution to this
geodesic equation to obtain more detailed comparisons.

Returning to the string case, we can also use the insights obtained above in the point particle case to illuminate
potential directions to proceed here. All string solutions presented here were obtained in the conformal gauge,
but in the particle case we observe that the equations including an additional degree of freedom (there in the form
of the einbein) generally performed better — by analogy, perhaps including additional non-physical degrees of
freedom to be solved for in the string case will lead to better and more stable solutions. There is also the option of
exploring the equations of motion obtained from the Nambu-Goto action, although this action is analogous to the
massive action Sm in the particle case, indicating that we are unlikely to obtain useful solutions from this action
unless we can determine the reason that the Sm and S2 actions fail in the particle case and show those do not apply
here. Finally then, we also have the option of using the obtained geodesic solutions from the point particle as seeds
for the string solutions.
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