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Abstract. While searches for physics beyond the Standard Model (BSM) have yet to yield
conclusive discoveries, they continue to motivate the development of more flexible, data-driven
strategies. At the ATLAS experiment at the Large Hadron Collider (LHC), trigger systems are
used to rapidly select potentially interesting proton-proton collisions for further analysis. Tra-
ditional triggers rely on pre-defined criteria, such as high-momentum particles, which may miss
more subtle or unconventional signs of new physics. To overcome this limitation, machine learn-
ing algorithms are being developed to identify anomalous events in real time based on their
overall detector signature, rather than specific features. Using unsupervised learning techniques,
these algorithms learn to characterise typical collision patterns directly from the data, without
input from Standard Model or BSM theory. Events that diverge significantly from these patterns
are flagged as anomalous for further study. These events are stored for detailed offline analysis.
This approach enables a broad and largely model-independent search for unexpected phenomena
in the vast datasets of Run-3 and beyond. It could potentially reveal signals that targeted BSM
searches might overlook.

1 Introduction
The Standard Model (SM) of particle physics describes all the known elementary particles and their interactions
via three of the four fundamental forces of nature. The SM is a very successful theory whose predictions have been
backed up by many experimental results. However, there are some phenomena the SM does not explain, alluding
to the SM being an incomplete theory. These unexplained phenomena include, but are not limited to, the origin of
dark matter [1], the dominance of matter over anti-matter in the universe [2], and the lack of a description of gravity.
So far, direct searches for theories beyond the SM (BSM) have yet to provide any conclusive evidence for these
new theories. As such, there is an increasing focus on other methods to find new physics. One of these methods is
using Anomaly Detection (AD), which involves studying data that significantly deviates from the typical dataset.
For example, consider a dataset that is completely dominated by hadronic objects. An event that has no hadronic
objects and only electrons or muons would then clearly deviate from what all the other events contain. Using AD
avoids any model assumptions, allowing the data to speak for itself, and provides the potential to find signals that
the current searches cannot.



2 ATLAS trigger system
In order to study anomalous events, they first need to be found. In the ATLAS experiment [3] at CERN, triggers
are used to select collisions that are likely to contain interesting physics. Given that there are around 40 million
proton-proton collisions that occur within the ATLAS experiment every second, and that most of these are low-
energy inelastic-scattering collisions, not all of the collisions can be saved to disk. Instead, two levels of trigger
systems are used to reduce the data rate to a manageable amount, as well as select the most interesting collisions.
The first level trigger, or L1 trigger, is a hardware-based trigger with the trigger logic implemented on FPGA
boards. The L1 trigger has to look at every collision to determine if there is anything interesting, and needs to
make this decision within 2.5 µs. To keep within this short latency, only coarse information from the calorimeters
and muon spectrometer are used to reduce the data rate from ∼40 MHz to ∼100 kHz.
The data that passes the L1 decision is sent to the High-Level Trigger (HLT). The HLT is a software-based trigger
that performs a basic reconstruction of the objects, using all parts of the detector within a region where the L1
trigger fired, also known as the Region-of-Interest (RoI). The HLT triggers are seeded by corresponding L1 triggers,
forming what are known as “trigger chains". For example, the muon HLT triggers will only look at data that fired
one of the muon L1 triggers. Each collision can fire multiple different triggers though. So while the L1 trigger
processes every collision, the HLT trigger only looks at a subset of the data. The HLT trigger then needs to make
its decision within tens of milliseconds, reducing the data rate further from ∼100 kHz to ∼1 kHz. All data that
pass at least one of the HLT triggers is sent off detector for permanent storage.
The current set of triggers all use standard physics signals to trigger on. Therefore, to trigger on anomalous
collisions, new triggers are needed. In order to learn from the data itself and try to exploit unknown features in the
data, machine learning techniques are used to create these new AD triggers.

3 Generic Event-Level Anomalous Trigger Option (GELATO)
The triggers used for anomaly detection in the ATLAS experiment are the Generic Event-Level Anomalous Trigger
Option (GELATO) triggers, designed by the ATLAS AD trigger group. To classify a collision as anomalous, an
algorithm needs to be able to distinguish between a typical collision and one that looks different from this. To this
end, both the L1 and HLT GELATO use a form of deep neural network known as Auto-Encoders (AEs). These
networks aim to reconstruct the input data as best as possible. If the typical dataset makes up 99.9% of all the data,
the AE will learn to reconstruct this well. When it is given the 0.1% that is anomalous to this typical dataset, the
AE will struggle to reconstruct it and thus have a large reconstruction error. The GELATO L1 trigger uses a more
complex version of the AE, known as a Variational Auto-Encoder General Adversarial Network (VAE-GAN) [4].
A diagram illustrating the structure of a VAE-GAN is given in Figure 1. There are three components to a VAE-
GAN, the generic AE, the variational part and the adversarial part.
A generic AE (the top section of Figure 1) has two main components, the encoder and decoder. The encoder
reduces the number of dimensions at each layer down into the latent space. This reduction tries to find an efficient
and compressed representation of the data, while learning the important features and removing noise. The decoder
expands the dimensions back out from the latent space to the same number of dimensions as the input. The AE is
an unsupervised model trained by minimising the loss function LMSE , defined by the Mean Square Error (MSE),
between the outputs of the decoder and the inputs to the encoder. This loss function is shown in Equation 1, where
xi and x̂i are the inputs and outputs respectively, and n is the number of inputs/outputs. In a generic AE, collisions
with a large MSE would be considered anomalous.
For the variational part of the VAE-GAN (middle section of Figure 1), an addition is made to the latent space of
the generic AE. Instead of the final layer of the encoder mapping directly onto the latent space, it maps onto mean
(µz) and standard deviation (σz) vectors that have the same dimensions as the latent space (nz). The µz and σz are
used to create an nz-dim standard normal distribution, from which the latent space variables are sampled. With the
inclusion of the variational part comes the addition of the Kullback-Leibler (KL) divergence loss, LKL, to the total
loss function. The definition of LKL is given in Equation 2. Here, µk and σk are the components of the µz and σz
vectors, and β is a parameter that is varied to control how much of an impact the KL divergence has on the total
loss function. The KL divergence encourages the latent space to follow a standard normal distribution, ensuring a
well-behaved latent space.
The adversarial part of the VAE-GAN (bottom section of Figure 1) includes an additional discriminator D. This
discriminator is a simple Deep Neural Network (DNN) that learns to differentiate between the “real" and “fake"
signals, or inputs (xi) and outputs (x̂i) respectively. The discriminator is trained using the loss function LD, as
defined in the lower section of Figure 1. The total loss function of the VAE-GAN is altered by including the
adversarial loss LAdv , shown in Equation 3. Here the λ is a parameter that is varied to control how much of an
impact the GAN has on the total loss function, and D(x̂) is the output of the discriminator when given the output
of the VAE-GAN as input. The decoder tries to fool the discriminator into classifying the output x̂i as real, with
the discriminator acting as an adversary to the decoder. This helps to regularise the output, creating more realistic
data-like reconstructions. The combination of these three loss functions are used to define the total loss function



Figure 1: Illustration of the structure of a Variational Auto-Encoder General Adversarial Network (VAE-GAN).
The upper section shows the generic Auto-Encoder (AE). The middle section shows the variational latent space,
which includes a sampling from a standard normal. The lower section represents the GAN, or discriminator,
showing the loss function used to train the discriminator.

of the VAE-GAN, as in Equation 4.
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LReco = LMSE + LKL − LAdv (4)

3.1 GELATO L1
Given the required latency of the L1 triggers, and the hardware constraints, the L1 GELATO can’t use the full
structure of the VAE-GAN when it is implemented on the FPGA boards. Instead, the full VAE-GAN structure is
used when training the L1 GELATO, but only the encoder and the µz vector are implemented onto the FPGA boards
for use in the ATLAS experiment. Due to this simplification of the algorithm, the metric used to determine whether
a collision was anomalous or not (also known as the AD score) is the clipped KL divergence Lclipped

KL = β 1
2

∑
µ2
k.

This is why the use of a VAE-GAN was necessary as it ensured that the clipped KL score would be good enough
to find the anomalous collisions. This allows for a quick and efficient algorithm to be implemented on the FPGAs.
The inputs to the GELATO L1 consist of 44 variables. These cover the transverse momentum pT , pseudorapidity
η, and angular direction φ of 15 objects: six jets, four taus, 4 muons and the missing transverse energy Emiss

T .



The encoder has 2 hidden layers, with the first having 32 dimensions and the second 16 dimensions, which is then
reversed in the decoder. The latent space has only three dimensions. The threshold on the clipped KL divergence
score used to separate anomalous from typical data is determined by requiring a unique rate of 1 kHz. The unique
rate is the amount of data passing the GELATO L1 per second that do not pass any other L1 triggers.

3.2 GELATO HLT
Given that the HLT has a longer latency than the L1 triggers, the algorithm has more time to perform inference,
allowing a more computationally intensive algorithm to be implemented in the ATLAS experiment. The GELATO
HLT therefore uses a full generic AE (top section of Figure 1) for both the training and implementation of the
trigger. Since the output of the decoder is used to calculate the score, there is no need for the use of the variational
and GAN parts to ensure a well behaved latent space.
The inputs to the GELATO HLT are also slightly different, using 47 inputs covering the pT , η and φ 16 objects:
six jets, three electrons, three muons, three photons, and Emiss

T . The encoder is larger as well, with four layers
with dimensions of 100, 100, 64 and 32, with these reversed for the decoder. The latent space has a dimension of
four. In order to reduce the noise, a minimum pT selection is applied to the objects. All jets need to have pT > 50
GeV, while the electrons, muons and photons need pT > 30. If an object fails these requirements, they are set to
zero. Both the loss function and the AD score for the GELATO HLT are the masked MSE. This is just Equation 1,
but only using the non-zero xi and x̂i. The GELATO HLT threshold is determined such that the unique data rate
is 10 Hz.

3.3 Training and testing data
The data used to train both the GELATO L1 and HLT was the Enhanced Bias (EB) [5] dataset. This is real data
collected by the ATLAS experiment during the 2024 data taking period. A minimal set of L1 triggers, spanning
a wide range of energies and objects, was used to select this data. Each event in the dataset has a dedicated
weight mostly based on the prescales of the triggers that are used to “unbias" the data. This provides a dataset that
contains rare events while maintaining an unbiased spectrum of events. The EB dataset is also used to determine
the thresholds on the AD scores based on the unique rate of EB data with AD scores above the threshold.
A broad selection of Monte Carlo (MC) samples are used as signal models to demonstrate the model independent
nature of the GELATO triggers. They represent both Standard Model (SM) and Beyond the Standard Model (BSM)
processes, and are also known to struggle with the standard ATLAS triggers. The MC samples are summarised in
Table 1 [6].

Data
Enhanced Bias Data collected in 2024 by the ATLAS experiment

using a minimal set of L1 triggers
SM MC processes

Z → νν (b filter) Z decaying to νν with a b filter
VBF hh→ bbbb VBF hh decaying to bb̄bb̄

BSM MC processes
HAHM ggF: h→ ZdZd → 2l2ν Hidden Abelian Higgs Model (HAHM) with mZd = 28 GeV

produced via ggF h
HNL→ eµν Heavy Neutral Lepton (HNL) with m = 7.5 GeV, cτ = 1 mm
ggF h→SUEP→full-had Soft Unclustered Energy Pattern (SUEP) produced via ggF h
VBF h→ aa→ 4b aa produced via VBF h with ma = 55 GeV, τa = 1 ns
ggF h→ aa→ 4b aa produced via ggF h with ma = 16 GeV, τa = 10 ns

Table 1: Summary of the data used for training the GELATO triggers, and the MC samples used for testing the
GELATO triggers [6]. The MC samples are split by whether they are SM or BSM processes.



7−10 6−10 5−10 4−10 3−10 2−10 1−10 1
False Positive Rate

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

T
ru

e 
P

os
iti

ve
 R

at
e

 PreliminaryATLAS
L1 Anomaly Detection VAE
Data24 Enhanced Bias

 = 13.6 TeVs

ν 2l2→ dZd Z→ ggF: h HAHM

 ν µ e → HNL

 full-had→ SUEP →ggF h 

 4b→ aa →VBF h 

 (b filter)νν →Z 

 4b→ aa →ggF h 

 bbbb→VBF hh 

5−10 4−10 3−10 2−10 1−10 1
False Positive Rate

5−10

4−10

3−10

2−10

1−10

1

T
ru

e 
P

os
iti

ve
 R

at
e

 PreliminaryATLAS
HLT Anomaly Detection AE
Data24 Enhanced Bias

 = 13.6 TeVs

ν 2l2→ dZd Z→ ggF: h HAHM

 ν µ e → HNL

 full-had→ SUEP →ggF h 

 4b→ aa →VBF h 

 (b filter)νν →Z 

 4b→ aa →ggF h 

 bbbb→VBF hh 

Figure 2: The ROC curves for the GELATO L1 (top) and GELATO HLT (bottom) [6]. The y-axes show the TPR
defined as the weighted yield of MC signal events passing the GELATO triggers at various AD score thresholds.
The x-axes shows the FPR defined as the weighted yield of EB background events passing the GELATO triggers
at various AD score thresholds. The diagonal dashed lines represent using a 50% probability to classify the event
as either anomalous or typical. The coloured lines are the different MC samples used as signal proxies, covering
both SM and BSM processes. All events used in the calculations for the lower plot passed the GELATO L1. The
descriptions of the different MC samples are given in Table 1.



4 Discussion
The Receiver Operating Characteristic (ROC) curves for both the GELATO L1 and HLT are shown in Figure 2.
For these ROC curves, the MC processes are considered the different signal processes, while the EB dataset is
considered the background. For every AD score obtained in the signal datasets, the weighted fraction of those
samples above that AD score determines the True Positive Rate (TPR). The same is done for the EB dataset, which
gives the False Positive Rate (FPR). For the given AD scores, the TPR is plotted against the FPR to evaluate the
signal-background discrimination of the GELATO triggers. If the GELATO triggers classified purely randomly,
the diagonal dashed lines in Figure 2 would be obtained. So, if the ROC curve of a MC process is above this
dashed line, it means the GELATO trigger can distinguish between the signal and background. Given that all
the MC processes are above the dashed line for both the GELATO L1 and HLT, these new triggers show strong
discriminating power between signal and background across a wide variety of possible processes.
A study of the correlations of the input variables at the HLT stage, with the GELATO L1 and HLT scores, was
performed for the events that passed the GELATO L1. It was found that the GELATO L1 and HLT AD scores were
not strongly correlated to any single variable, showing that the algorithms are learning more information about the
data. The correlation of the AD scores with the η and φ of all the objects was negligible, all being around 1 or 2 %
correlation. However, the correlation between the GELATO AD scores with the φ ofEmiss

T was found to be around
10%. The highest correlations of the AD scores were with the highest pT objects of each object class. Interestingly
though, when looking at the correlations of the events that passed the GELATO HLT only and no other HLT
triggers, there were higher correlations for the sub-leading objects compared to the leading objects. This suggests
that while very high pT objects are considered more anomalous, they are likely to be triggered by some of the other
triggers. The uniquely anomalous events thus likely have lower pT objects with higher multiplicities.

5 Conclusion
In order to find new and interesting physics at the LHC in a model agnostic way, the first anomaly detection triggers
have been developed for the ATLAS experiment, called the GELATO triggers. These are machine learning based
algorithms, using a generic auto-encoder or a VAE-GAN depending on the level of trigger. The GELATO L1 has
already been implemented in the ATLAS experiment, while the GELATO HLT has been added to the trigger lists
but is still under resource cost and data rate studies. For future plans, a way to calibrate the GELATO triggers
needs to be determined. The common triggers use well-defined trigger-object correspondences for calibration, but
with anomalous data, there are no obvious corresponding objects. In conjunction with determining a calibration
method, an offline analysis is ongoing to examine these anomalous events in greater detail and assess their potential
to reveal novel physics. The GELATO triggers represent a shift towards more model-agnostic physics searches and
will only improve in future.

References
[1] Planck Collaboration, “Planck2015 results: I. overview of products and scientific results,” Astronomy and

Astrophysics, vol. 594, p. A1, Sep. 2016. [Online]. Available: http://dx.doi.org/10.1051/0004-6361/201527101

[2] M. B. Gavela, P. Hernandez, J. Orloff, and O. Pene, “Standard model cp-violation and baryon
asymmetry,” Modern Physics Letters A, vol. 09, no. 09, pp. 795–809, Mar. 1994. [Online]. Available:
http://dx.doi.org/10.1142/S0217732394000629

[3] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider,” Journal of
Instrumentation, vol. 3, no. 08, p. S08003, 2008. [Online]. Available: http://stacks.iop.org/1748-0221/3/i=08/
a=S08003

[4] E. Govorkova et. al., “Autoencoders on field-programmable gate arrays for real-time, unsupervised new
physics detection at 40 mhz at the large hadron collider,” Nature Machine Intelligence, vol. 4, no. 2, pp.
154–161, Feb. 2022. [Online]. Available: http://dx.doi.org/10.1038/s42256-022-00441-3

[5] ATLAS Collaboration, “Trigger monitoring and rate predictions using Enhanced Bias data from the
ATLAS Detector at the LHC,” CERN, Geneva, Tech. Rep., 2016, all figures including auxiliary figures
are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-DAQ-PUB-2016-002.
[Online]. Available: https://cds.cern.ch/record/2223498

[6] ATLAS Collaboration., “Public combined trigger plots for collision data,” https://twiki.cern.ch/twiki/bin/view/
AtlasPublic/CombinedTriggerPublicResults, 2025.


