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Abstract. Building on the ATLAS and CMS evidence of the Higgs boson (h) decaying into a
Z-boson and a photon (with a 3.4σ significance), the current Standard Model (SM) predictions
for the h → Zγ signal rate exceed the measured value by (2.4 ± 0.9)σ, indicating possible
new physics effects or systematic uncertainties that warrant further investigation. This analysis
investigates this rare process using machine learning (ML) techniques, where we use classifiers
such as the Extreme Gradient Boost (XGBoost) and the kernel density estimation to analyse the
production modes of h → Zγ, including gluon-gluon fusion (ggF), within the framework of the
Standard Model Effective Field Theory. This machine learning approach aims to constrain the
six-dimensional Wilson coefficients and shed light on potential deviations from the SM predic-
tion.

1 Introduction
Recent measurements by ATLAS and CMS have reported evidence on the decay of the h → Zγ process, which
cannot be fully explained within the Standard Model (SM). We look for potential answers beyond the SM (BSM),
and that is where Standard Model Effective Field Theory (SMEFT) comes into play. The SMEFT [1] provides
a systematic approach for BSM physics by introducing higher-dimensional operators. These operators are sup-
pressed by powers of a high-energy scale Λ, allowing for the parameterisation of new physics effects. We build
upon the findings presented in [2], where the initial step is to identify the specific operators within the SMEFT
framework that play a role in our decay process. These operators are essentially mathematical expressions that
represent potential deviations from the SM predictions [3, 4], and once we have identified the relevant operators,
we will calculate their corresponding Wilson coefficients. These coefficients are numerical values that determine
the strength of the operator’s contribution to the decay process. The SMEFT@NLO package is a computer program
designed to automate this calculation as it uses models created with FeynRules [5], which is another software
tool that helps define the interactions between particles in the SM and any potential extensions.



2 Data Analysis
2.1 Object Selections
To optimise the signal events over background noise, we applied minimal cuts, including object and channel-
specific selections, based on transverse momentum (pT ), invariant masses, pseudorapidity (|η), missing transverse
energy (Emiss

T ), and jet reconstruction.

Table 1: Summary of object selections criteria.
Selection Criteria
Photon requirement (γ) At least one photon candidate
Lepton requirement (ℓ) At least two same-flavour, opposite-charge leptons (ℓ = e, µ)
Muon(µ) selections |ηµ± | < 2.7, pµ

±

T > 25 GeV
Electron (e) selections |ηe± | < 2.47 excluding 1.37 < |ηe± | < 1.52, pe

±

T > 25 GeV
Photon selections |ηγ | < 2.47 excluding 1.37 < |ηγ | < 1.52, pγT > 10 GeV
Jet reconstruction anti-kt algorithm, R = 0.4
Jet-photon separation Jets within ∆R < 0.4 of any photon are rejected
Dilepton (ℓℓ) mass window 81 < mℓ+ℓ− < 101 GeV
Zγ system pT (Zγ) > 50 GeV
Photon-lepton separation ∆R(γ, ℓ) > 0.4
Missing transverse energy Emiss

T < 40 GeV
Channel-specific cuts
Leptonic (ℓ+ℓ−γ) channel 100 < mZℓ+ℓ−γ < 140 GeV, mℓℓ +mZℓℓγ > 182 GeV
Jet (jjγ) channel 50 < mZjjγ < 200 GeV
Neutrino (νν̄γ) channel 30 < Emiss

T < 100 GeV

The next subsection discusses the ML techniques that contribute to optimising the significance estimation
derived from the applied cuts.

2.2 Signal and background discrimination using Machine Learning
We use the XGBoost classifier, which is the implementation of the Boosted Decision Trees (BDT) model that
uses second-order optimisation. Unlike traditional BDTs that only use first-order gradients, XGBoost takes advan-
tage of both gradients and Hessians for better convergence. For our work, it is trained for 3500 boosting rounds
(n_estimators) to improve its learning capability. The learning rate is set at 0.05, striking a balance between
the speed of convergence and the stability of the model whereby a higher learning rate could lead to fluctuations,
while a lower rate might slow down the training process. This method includes Lasso and Ridge regularisation
set to 0.0001 to prevent overfitting. We have also added a gamma parameter to control the minimum reduction
in loss required for making additional splits in the trees. Our objective function, binary:logistic, is aimed
at optimising binary classification using the logistic loss function (logloss). The trees have a maximum depth
of 5 (max_depth), which helps balance model complexity and performance. We enable early stopping after
50 rounds (early_stopping_rounds), ensuring that training stops when no improvement is observed. This
strategy promotes stable learning while reducing the risk of overfitting. The next step was to select all the generated
signal and background MC samples and ensured that we used the same number of signal and background events
such that the signal-to-background ratio was 1. The ggF production is categorised into three distinct categories:
jjγ, ℓ+ℓ−γ, and νν̄γ. For the ggF production categories, we exclusively used the XGBoost classifier. We later
trained our classifier on the same MC-simulated samples for performance comparison. Then the performance of
both classifiers was assessed using the Kernel Density Estimation (KDE) [6, 7] to estimate the probability density
functions of predicted values.

3 Preliminary Results
After generating the MC samples, we used a random forest classifier to evaluate feature importance and used the
features with the highest importance to optimise our model. Below, we present the selected features for each chan-
nel, their respective channels, their corresponding optimised Receiver Operating Curve (ROC) and associated Area
Under the Curve (AUC) scores. We describe the methods used to calculate Z-scores, which are used to quantify
the statistical significance of the observed signals using the Machine-Learned Likelihood (MLL) approach [8, 9]
and KDE. We also compare different binning values for the classifier’s outputs. Z-scores, meanwhile, are used



to quantify the statistical significance of the observed signals. We used a python script to evaluate the classifier’s
sensitivity by calculating the binned significance for Nbins = 10, 25, 50, 100. The background and signal his-
tograms produced were normalised to account for the expected event counts, and the binned significance Z, which
is calculated as:

Z(i) =

√
2
∑
i

[
(Si +Bi) · ln

(
1 +

Si

Bi

)
− Si

]
where Si and Bi represent the normalised bin values for signal and background events in the i-th bin, respectively.
Finally, the KDE method offers a continuous analysis, avoiding the limitations of discrete binning.

Table 2: The ggF production Z-scores for jet, neutrino, and lepton channels.

Channel Jet Neutrino Lepton

Z (10 bins) 5.22 6.27 24.08
Z (25 bins) 5.31 6.48 24.00
Z (50 bins) 5.33 6.59 23.92
Z (100 bins) 5.44 6.69 23.82
Z (KDE) 10.66 11.34 27.78

Figure 1: The three most important kinematics, i.e, the transverse momentum (left), missing transverse energy
(center), and the invariant mass of the entire system (right) normalised to unity of the ggF production (νν̄γ cate-
gory).

Figure 2: The three most important kinematics, i.e, the leading jet transverse momentum (left), subleading jet
transverse momentum (center), and dijet mass system (right), normalised to unity of the ggF production (jjγ
category).



Figure 3: The three most important kinematics, i.e, the leading lepton transverse momentum (left), transverse mo-
mentum of the system (center), and pseudorapidity of the system (right) normalised to unity of the ggF production
(ℓ+ℓ−γ category).

0.0 0.2 0.4 0.6 0.8 1.0
Background rejection

0.0

0.2

0.4

0.6

0.8

1.0

Si
gn

al
 e

ffi
cie

nc
y

AUC = 0.958

Figure 4: Comparison of the ROC Curve with its associated AUC score (left), XGBoost performance with KDE
(center), and feature importance (right) for the ggF production (ℓ+ℓ−γ category) without the invariant mass.
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Figure 5: Comparison of the ROC Curve with its associated AUC score (left), XGBoost performance with KDE
(center), and feature importance (right) for the ggF production (jjγ category) with the invariant mass.
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Figure 6: Comparison of the ROC Curve with its associated AUC score (left), XGBoost performance with KDE
(center), and feature importance (right) for the ggF production (νν̄γ category) with the invariant mass.

4 Conclusion and Future Plans
We evaluated the XGBoost classifier’s performance in the ggF channel using ROC scores, demonstrating its signal-
background separation capability. Next month, we will extend this analysis to the VBF, tt̄H , and VH production
channels, assessing performance both before and after optimization using each channel’s key features. We also
plan to compare the performance of a BDT classifier against XGBoost. Our results indicate that Kernel Density
Estimation (KDE) improves with larger ensemble sizes because it avoids output binning, while the binning method
benefits from increased bin counts; KDE consistently outperforms binning.
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