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Abstract. Ultra-relativistic heavy-ion collisions create a nuclear fireball that serves as a pow-
erful laboratory for probing the frontiers of Quantum Chromodynamics (QCD). In recent years,
there has been growing interest in the study of small collision systems—such as proton-proton
(pp) and proton-nucleus (pA)—at facilities like RHIC and the LHC. Many of the assumptions un-
derlying the energy loss formalism developed in the Djordjevic-Gyulassy-Levai-Vitev (DGLV)
model, break down in these small systems. In this work, we present an extension of the DGLV
formalism that specifically accounts for the unique features of small system dynamics. This is
achieved by relaxing the large formation time approximation and introducing an additional cor-
rection term that accounts for short path lengths in the medium. By relaxing these assumptions,
one encounters a more intricate analytic structure for the energy loss, and thus increased com-
putational demands; we address this challenge by developing a novel numerical scheme. Our
approach accurately parametrizes the geometry of the quark-gluon plasma (QGP), resulting in a
dramatic computational speedup—improving efficiency by up to seven orders of magnitude.

1 Introduction
The nuclear modification factor (RAA) is a key observable for studying the energy loss of high transverse momen-
tum (pT ) particles traversing the Quark-Gluon Plasma (QGP). Rooted in Bjorken’s jet quenching framework [1],
the RAA quantifies the suppression of particle yields in heavy-ion collisions relative to proton-proton systems. Ex-
periments at RHIC observed a suppression in light hadron spectra by a factor of five [2], signaling strong partonic
energy loss in the QGP.

More recently, signatures of QGP formation—including quarkonium suppression, strangeness enhancement,
and collective flow—have also been identified in small collision systems at RHIC and the LHC [3]. However,
small systems pose unique challenges, such as centrality bias, which arises from correlations between soft and
hard particles [4].

Azimuthal anisotropies in detected spectra, as quantified by the vn flow coefficients, offer deeper insights into
the properties of the QGP, including transport properties and the path-length-dependent energy loss of partons
[5, 6]. The azimuthal anisotropies can be characterized through a Fourier decomposition of the observed spectra,
the Fourier decompositions are given in terms of the vn Fourier coefficients and the reaction plane angle ψn.
Experimentally, the reaction plane angle is not accessible; as such, observable quantities which couple soft and
hard hadrons in a given centrality class serve as approximations to the reaction plane angle have been developed
[7, 8].

Various energy loss models have been developed to describe the RAA, but it has proven to be a challenge on
theoretical grounds to simultaneously predict the nuclear modification factor and the vn coefficients—a tension
known as the RAA ⊗ vn puzzle. The tension is attributed to the omission of soft-sector fluctuations and event-by-
event fluctuations of the initial state [5].
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In this work we use the energy loss model developed by Faraday and Horowitz (FH) which has improved the
DGLV radiative energy loss formalism by including short path-length corrections and collisional energy loss using
Hard Thermal Loop (HTL) kinematics [9]. Their model adopts a static, brick-like medium and parameterizes the
scattering center using an effective path length [9, 10, 11, 12, 13].

The primary focus of this manuscript will to be to develop a framework that describes the nuclear modifica-
tion factor while simultaneously describing the anisotropic flow harmonics. We extend upon the work of FH by
including event-by-event fluctuations of the bulk geometry and relaxing the brick-like and static simplification of
the bulk’s geometry.

2 Parametrization of Trajectories
The energy loss of a parton in the QGP depends on its path and the medium’s geometry. As calculating energy loss
for all possible trajectories can be computationally expensive (see section 2.2 for a more in depth discussion), we
follow the previous work of [9, 10] by mapping each trajectory to two parameters—which the energy loss can be
made to be dependent on—the energy loss can then be averaged over these parameters to capture the global effects
of the collision system.

We model the energy loss in terms of a scattering center density ρ̄, which is related to the medium density ρ
via

ρ =
Ns

A⊥
ρ̄, (1)

where Ns is the number of scatterings, A⊥ the transverse area. This medium density ρ can be expressed in terms
of the medium’s temperature through elementary thermodynamic relations,

ρ =
4ζ(3)(4 + nf )

π2
T 3. (2)

To model ρ along each trajectory, we fit the medium density with power-law profile via

ρfit(z) = ρ0

(τ0
z

)1.2

θ(zc − z)θ(z − τ0), (3)

with the formation time of the medium τ0 = 0.4 fm. Then, using eq. (2), the corresponding temperature profile is

Tfit(z) =

(
π2ρfit(z)

4ζ(3)(4 + nf )

)1/3

. (4)

For each path, the cutoff zc is determined by the distance at which T drops below the thermalization temperature,
and ρ0 is fixed by the following condition∫

dzTHydro(x0 + zϕ̂, τ0)
!
=

∫
dzTfit(z), (5)

where THydro is a hydrodynamic temperature distribution obtained from the IP-Glasma model [14]. To generalize
to an entire event ensemble, we define a probability distribution over (ρ0, zc) for a fixed angle ϕ through the
medium via

Pgeo(ρ0, zc|ϕ) =
∫
d2x0 ncoll(x0)× δ

(
ρ0(x0, ϕ)− ρ0

)
δ
(
zc(x0, ϕ)− zc

)
, (6)

where we have assumed that the initial parton production scales with ncoll.

2.1 Energy Loss
In this work, we model the energy loss of a parton moving through the QGP by taking into account radiative and
elastic contributions. Following FH [9, 11, 12, 13] we use the WHDG [10] formalism along with its short path
length correction to model the radiative sector of the energy loss, and we model the elastic energy loss by using
an effective field theory called Hard Thermal Loops (HTL). Our implementation of the energy loss relaxes the
static brick assumption used by FH; the formalism we make use of allows the Debye mass µ and gluon mass mg

to depend on the temperature of the medium at each point of the parton’s trajectory through the medium. The
radiative and elastic formalism grants us access to the probability distributions Prad(x|ρ0, zc) and Pel(x|ρ0, zc)
respectively, where x is the fractional energy loss of the incoming parton; the total energy loss for each event in the
azimuthal direction ϕ can then be found via the convolution of Prad and Pel, and then averaging over the geometry
of the medium, i.e.

Ptot(x|ϕ) =
∫
dρ0dzc Pgeo(ρ0, zc|ϕ)

∫
dϵ Pel(ϵ|ρ0, zc)Prad(x− ϵ|ρ0, zc) (7)



Figure 1: (Left): Comparison of temperature distributions obtained from hydrodynamic simulations (dotted curves)
and the corresponding fitted temperature distribution (solid curves) for two paths through the medium. The red
curves have initial positions of x0 = (1.5, 4.5) fm and angles ϕ = π/4, and are representative of characteristic
peripheral trajectories; the blue curves have initial positions of x0 = (0, 0) fm and angles ϕ = 0, and are represen-
tative of characteristic central trajectories. The hydrodynamic temperature distribution comes from a PbPb 0–5%
collision system at

√
sNN = 5.02 TeV. For the peripheral trajectory, zc = 5.7 fm and ρ0 = 30.5 fm−3; for the

central trajectory, zc = 9.1 fm and ρ0 = 74.9 fm−3. (Right): Correlation between ρ0 and zc parameters for 0–5%
PbPb collision system at

√
sNN = 5.02 TeV. The first moments for the Pgeo(ρ0, zc) distribution (with the angular

dependency integrated out) are found for this collision system to be ⟨ρ0⟩ = 46.0 fm−3 and ⟨zc⟩ = 7.8 fm.

2.2 Numerical challenges of the energy loss
Conceptually, the most simple method of calculating the energy loss on a path-by-path basis would be to compute
the energy loss using the true hydrodynamic temperature profile and then using eq. (2) to find the associated
medium density. To capture the global effects, one would then simply average over all the different paths through
the medium. However, the total number of paths one would need to consider to resolve the QGP would typically
involve ∼ 20 angles and a grid of size ∼ 15×15(fm)2 with intervals of ∼ 0.05(fm). To capture the event-by-event
fluctuations, one would need to calculate the energy loss another ∼ 103 times, one for each event.

This computational expensiveness is why we introduce the ρ0 and zc parameters, as these parameters allow us
to calculate the energy loss as a function of the two parameters and then use the Pgeo(ρ0, zc|ϕ) distribution (which
is computationally inexpensive) to capture the global effects. The entire phase space of possible paths requires a
grid of ρ0 and zc parameters such that ρ0 ∈ [1, 100] fm−3 and zc ∈ [0.4, 10.4] fm with intervals of 10 fm−3 and 1
fm respectively. Thus, calculating the energy loss by using the fitted parameter method proves to be seven orders
of magnitude quicker than more direct method describe in the preceding paragraph.

3 Observables
3.1 Nuclear Modification Factor
The nuclear modification factor of a parton q in an A+A collision system is defined as

Rq
AA(pT , ϕ) ≡

d2Nq
AA,f/dpT dϕ

Ncoll d2N
q
pp,f/dpT dϕ

(8)

=

∫
dx

1− x
Ptot (x|ϕ)

fqAA

(
pT

1−x , ϕ
)

fqpp(pT , ϕ)
(9)

where d2Nq
AA,f/dpT dϕ and d2Nq

pp,f/dpT dϕ are the final-state parton spectra in A + A and p + p collisions
respectively; Ncoll is the average number of binary collisions, typically calculated using the Glauber model [15].
The second equality (eq. (9)) grants us access to the RAA on theoretical grounds, and is true if one assumes the
following: (1) The partonic spectrum of the initial state in a p+p collision, scales like the partonic spectrum of the
initial state in an A + A collision, weighted by 1/Ncoll. (2) All modifications to the A + A differential spectrum
arises from the energy loss through interactions with the medium. (3) The proton-proton spectrum is unmodified
by the medium. Note that we have defined the notational device fqpp/AA(pT , ϕ) as:

fqpp(pT , ϕ) ≡
d2Nq

pp,i

dpT dϕ
& fqAA(pT , ϕ) ≡

1

Ncoll

d2Nq
AA,i

dpT dϕ
(10)



where in eq. (10), the i subscript is used to denote the spectrum of the (theoretically accessible but experimentally
inaccessible) initial state.

3.2 Azimuthal Anisotropies
The observed azimuthal anisotropy in high-pT hadrons allows for the study of the energy loss and the path length
dependence of hard partons moving though the QGP [5]. In this work, an analogue to the vn{SP} coefficients
observed experimentally is developed for the first time in the field from a theoretical point of view (see section 3.4).
This is done so that the theory predictions made in our study are more comparable to what is being observed
experimentally. As part of the framework developed here, we incorporate event-by-event fluctuations of the initial
state into the calculation of the vn and vn{SP} coefficients. We demonstrate that accounting for these fluctuations
is crucial for addressing the RAA ⊗ v2 puzzle (see fig. 2).

3.3 Azimuthal Anisotropies from Fourier Expansions
The azimuthal anisotropy in the distributions of the observed final state hadrons can be characterized by a Fourier
expansion [16]

2π

Nh,k
AA,f

dNh,k
AA,f

dϕ
= 1 + 2

∞∑
n=1

vkn cos
(
n
[
ϕ− ψk

n

])
(11)

where the vkn coefficients are the uniquely determined Fourier coefficients and the k index specifies a particular
event. Normalizing the angular hadronic Rh,k

AA(pT , ϕ) by the Rh,k
AA(pT ) averaged over all angles, one finds the

following expression

Rh,k
AA(pT , ϕ)

Rh,k
AA(pT )

= 1 + 2

∞∑
n=1

vkn cos
(
n
[
ϕ− ψk

n

])
. (12)

3.4 Scalar Product vn
The scalar product (SP) method of determining the reaction plane experimentally is achieved through the use of
Q⃗n flow vectors. The Q⃗n vectors provide an approximation to the reaction plane [16] and are determined from the
final state particles via

Qn ≡ Qne
inΨn =

∑
j

einϕj , (13)

One may then take the real and imaginary parts of Qn to be the x and y component of the Q⃗n vector respectively.
To access the Q⃗n in our energy loss formalism, we make use of the IP-Glasma model which is then evolved with the
MUSIC viscous relativistic (2 + 1) D hydrodynamics code, followed by UrQMD microscopic hadronic transport
[14]. The j index in eq. (13) is summed over final state particles from all oversampled UrQMD simulations and
the azimuthal angle is ϕj = arctan 2

(
pyj , p

x
j

)
. The vn{SP} coefficients are defined here as

vn{SP} ≡

〈
u⃗n · Q⃗n

〉
√
⟨Q2

n⟩
(14)

=

Ne∑
k=1

∫ 2π

0

dϕ Rh,k
AA(pT , ϕ)Q⃗

k
n · u⃗kn(ϕ)

2π
√
⟨Q2⟩NeR

h,k
AA(pT )

(15)

in line with what is commonly done experimentally [7, 8]. In eq. (14) the vector u⃗n is defined as u⃗n ≡ (cosnϕ, sinnϕ),
where ϕ is the azimuthal direction of the hadronic candidate. The quantity ⟨u⃗n · Q⃗n⟩ in eq. (14), is an average
over all events and over different u⃗n vectors associated with the observed hadrons; ⟨Q2

n⟩ is only averaged over
the events. The second equality (eq. (15)) provides us access to the vn{SP} coefficient on theoretical grounds;
eq. (15) follows if one assumes that the distribution of initial hard jet production is proportional to the number of
binary collision density nkcoll(x⃗).



Figure 2: (Left): Comparison of Fourier, Scalar Product v2 and the Fourier v2 without fluctuations as a function
of pT for D0 mesons. All curves are calculated with the strong coupling fixed at αs = 0.3. The top (bottom)
panel shows the results where the geometric average is calculated over a PbPb 0-5% (30-40%) centrality collision
system. (Right): The same as (Left) but for v3 instead of v2.

4 Results
In this section we present our model’s predictions for the RAA and v2 coefficients. All comparisons to data are
made with the strong coupling αs varied between 0.25 and 0.3. Note that we only present results for large system
data (PbPb) as calculations for small systems are yet to be complete.

In fig. 3 we show the prediction of the model for charged particles in PbPb collisions at 0-5% and 30-40%
centrality for both the RAA and the v2. The RAA data is from the CMS [17] and ATLAS [18] experiments
respectively; the v2 data comes from the same collaborations [7, 8].

Figure 3: (Left): Comparison of RAA predictions to CMS [17] and ATLAS [18] data for charged particles in 0-5%
(top) and 30-40% (bottom) PbPb. (Right): v2 predictions for charged particles vs CMS/ATLAS in 0-5% (top) and
30-40% (bottom) PbPb [7, 8].

5 Conclusion
In this manuscript, we presented a modification to the formalism developed by FH in [9, 11, 12, 13], in which the
static brick assumption has been relaxed. The model we present here takes into account the temperature profile of
the medium as a function of the parton’s path through said medium; the dynamic nature of the temperature on a
path-by-path basis is captured by parametrizing a power law dependency (eq. (3)) of the medium density through
two fitted parameters. The energy loss of a parton moving through the medium can be calculated in terms of these



two fitted parameters, this leads to a dramatic numerical speed up—which is vitally important for enough data to
be generated to capture the effects of the event-by-event fluctuations.

For high-pT charged particles, the model is in good agreement with v2 data for PbPb collisions systems and
shows the correct centrality dependence. The same conclusions can be drawn for the models predictive capabilities
when comparing to the RAA of high-pT charged particles in PbPb collision systems.
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