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Abstract. Effective attribution of nuclear materials intercepted outside regulatory control re-
quires the identification of unique, source inherent characteristics. To date, a limited number of
characteristics have been validated as signatures for uranium ore and uranium ore concentrate
(UOC), including rare earth element (REE) patterns and trace elements, which serve as geologi-
cal and geographical indicators. In this study, the concentrations of 11 trace elements, including
Ti, V, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, as well as REEs, Th and U in 38 samples from three
African regions: Botswana (Southern Africa), Kenya (East Africa), and Nigeria (West Africa)
were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The result-
ing compositional data were transformed and analyzed using statistical techniques, including
Multivariate Analysis of Variance (MANOVA), Linear Discriminant Analysis (LDA), Principal
Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) to test for regional dif-
ferences, determine the statistical significance of the differences observed, and test the potential
discriminative power of individual trace elements. MANOVA revealed statistically significant re-
gional differences in trace element compositions (p < 0.0001). LDA identified the elements most
responsible for group separation, achieving a high classification accuracy of 91.67% through
cross-validation. The first two components in PCA explained 79.15% of the total variance, while
HCA further supported the separation of samples into regionally distinct clusters. These results
demonstrate the potential of trace element signatures, in combination with multivariate statistical
methods, to effectively discriminate uranium samples by region of origin.

1 Introduction
Much like conventional forensics, nuclear forensic science relies on characteristic data and modeling to infer histor-
ical information such as origin and production processes [1]. Effective attribution of nuclear materials intercepted
outside regulatory control (MORC) is central to nuclear forensic investigations [2]. Uranium Ore Concentrate
(UOC) and its precursor, mined ore, are common intermediate front-end products, in the nuclear fuel cycle [3].
UOC is commonly traded between countries and frequently encountered in illicit trafficking incidents [3]. Char-
acteristic parameters in UOC such as chemical composition and most importantly, trace/impurity contents heavily
depend on the nature of the raw ore and have geographical and geological signatures [4]. Consequently, forensic



attribution of UOC can be based on signatures that persist from ore to UOC. To date, a limited number of char-
acteristic parameters have been validated as forensically significant signatures for mined uranium ore/UOC. Of
the signatures examined, the rare earth element (REE) pattern, chondrite normalized patterns in particular, serve
as powerful geological and geographical indicators and has become the subject of many studies on attribution of
UOC [2, 4]. However, a single signature is sometimes not enough to ascertain the source of MORC; instead, to
increase precision, a conglomerate of signatures that complement each other is required to determine the source
and, to create a robust nuclear fingerprint [2, 5]. The aim of this study was to demonstrate that measured trace
element signature can be used effectively as a tool for geographical source attribution of mined ore/UOC. The
concentrations of 27 elements: including 11 trace elements( Ti, V, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb), REE (La,
Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Th, and U in 38 samples from three African regions:
Botswana (Southern Africa), Kenya (East Africa), and Nigeria (West Africa) were measured using Inductively
Coupled Plasma Mass Spectroscopy. Comparing the concentrations of multiple trace elements in samples from
different countries to determine whether they come from the same country is a complex task [3]. The complex-
ity is brought on by the multidimensional nature of the data, which makes it difficult to visualize the data and
recognize patterns. To overcome this multidimensionality, statistical techniques such as DA, PCA and HCA are
applied [6, 7]. The data were subjected to a combination of supervised and unsupervised multivariate statistical
algorithms such as MANOVA, DA , PCA and HCA; to test whether there are statistically significant differences
between samples from different countries, respectively.

2 Materials and Methods
For the purpose of this study, the mined uranium ore samples served as UOC surrogate. Five samples were col-
lected from Botswana, twenty nine from Kenya, and 4 from Nigeria [8, 9]. The samples were crushed, milled and
acid digested using deionized water, aquarigia (a 1:3 mixture of HNO3 and HCl, respectively) and H2O2 in prepa-
ration for ICPMS analysis [8, 10]. Trace element concentration measurements were then performed using Agilent
Technology, 7700 Series ICP-MS. To validate the trace element parameter as a forensically relevant signature, the
concentration of 27 elements/variables: Be, B, Sc, Ti, V, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Mo, Cd, In, Sn,
Te, Cs, Ba, W, Re, Hg, Tl, Pb, Bi, REEs, Th, and U in the 38 samples were measured. The resulting concentrations
in ppb were extracted and prepared for subsequent analysis. The data were subjected to MANOVA, to test whether
there are statistically significant differences between samples from different countries, while DA , PCA and HCA
were used for classification, dimensionality reduction and data visualization, and clustering, respectively. Data
preparation is integral to successful multivariate statistical analysis [11]. Due to the nature of compositional data,
it is necessary to transform the data set prior to running multivariate algorithms. Centered log ratio (CLR) trans-
formation was applied to the dataset in CoDAPack software- a software designed to implement suitable methods
for compositional data based on Aitchisons’ log-ratio methodology [12]. XLSTAT 2025 was used to perform the
analysis on the transformed data matrix.

3 Results and discussion
3.1 Multivariate Analysis of variance (MANOVA)
Wilks test and Pillai test were performed in MANOVA (significance level α = 0.05) to test if the trace element
signature varies significantly between countries. For this, two hypothesis were synthesized; null hypothesis (H0),
and an alternative hypothesis (HA). H0 assumes that the variables or the interaction of the corresponding column
has no significant effect on the dependent variables (i.e Botswana=Kenya=Nigeria), while HA assumes that the
variable or the interaction of the corresponding column has a significant effect on the dependent variable (atleast
one country is different). From the results shown in Table 1, the computed p-value is less than the significance
level α = 0.05 and Fstatistic > Fcritical, therefore the H0 was rejected and HA was accepted. The risk of rejecting
H0 while it is true was found to be less than 0.01%. It was therefore concluded that atleast one of the countries
shows statistically significant differences when comparing the trace element signature. The next section illustrates
how the specific elements were identified and determined in driving the variance.

3.2 Unidimensional test for equality of means
Unidimensional test for equality of means is a preliminary statistical test used in DA that is based on Analysis of
variance(ANOVA). The test uses a hypothesis similar to that described in MANOVA for each variable separately,
helping to identify individual elements that contribute significantly to group differences [13]. In addition to the
p-value and the f-value, the test also evaluates the value of lambda for each element. Lambda is a measure of the
proportion of variance in dependent variables unaccounted for by differences in levels of the independent variable
(grouping variable) [14]. A lambda value of zero indicates that there exists no variance not explained by the
independent variable (which is ideal). The closer the lambda is to zero, the more the variable/element in question
contributes to the model. In combination with p-value < α and Fvalue > Fsig a null hypothesis can be rejected.



Samples
Wilks’ test Pillai’s Test

F Observed values 63.609 43.178
DF1 54 54
DF2 48 50
F Critical value 1.599 1.589
p-value <0.0001 <0.0001

Table 1: One-way MANOVA statistics for uranium ore samples using trace element signature

Figure 1 is a graphical representation of lambda result of the test. Elements with lambda > 0.5 do not contribute
significantly to variance and were not selected for subsequent PCA and HCA.

Figure 1: Bar graph showing calculated lambda for the individual elements

3.3 Discriminant Analysis (DA)
DA was used for its pattern recognition capability, which was used to build a classification model from trace
element data. DA generated discriminant functions by maximizing the between-class variance to within class
variance ratio to ensure high efficiency of the classification model [1]. The prediction/classification ability of the
model was evaluated using cross-validation [1]. One random sample was removed per country from the dataset to
form the test set, while the remaining n-3 samples were used to train the model. Once training was complete, the
model was used to predict the origin of the test set. Due to the relatively small data size and the unequal distribution
of the samples from each country, the process was repeated so that 30% of the largest group(Kenya) is used to test
the accuracy of the model. The procedure was therefore repeated nine times. The performance of the model can
be seen in Table 2. The results show that samples from Botswana and Kenya were correctly classified all the time;
however, on two occasions a sample from Nigeria was misclassified as Botswana. The developed model had a
prediction ability of 91%, which is acceptable.



from/to Botswana Kenya Nigeria % correct
Training Sample Botswana 9 0 0 100%

Kenya 0 9 0 100%
Nigeria 0 0 9 100%
Recognition ability 100%

Cross-validation Botswana 9 0 0 100%
Kenya 0 9 0 100%
Nigeria 2 0 7 75%
Prediction ability 91.67%

Table 2: Confusion matrix for training and cross-validation results based on trace element concentrations

3.4 Principal Component Analysis (PCA)
To reveal whether the samples form natural clusters based on their trace element parameters, unsupervised meth-
ods; PCA and HCA were applied. PCA is a dimensionality reduction tool which transforms data from a multidi-
mensional space and enables visualization in fewer dimensions (PCs) while preserving the most important varia-
tions. PCs are linear combinations of the original data. To determine the number of significant PCs, eigenvalues
were examined. Applying the Kaiser-Guttmann rule, only principal components/factors with eigenvalue greater
than 1 were considered significant dimensions. The first two PCs, F1 and F2, met the criteria and accounted for
79.15% of the total variance. These were used to construct the PC biplot shown in Figure 2. The left-hand side of
Figure 2 shows the results of the Kaisers varimax orthogonal rotation. The rotation moves the component axis so
that the projections of each variable (trace element) onto the factor axes are either near 1 or the origin. The position
of the variable is indicative of significance. However, due to the removal of insignificant variables prior to running
PCA, all elements are closer to 1 than to the origin. This further corroborates the findings of unidimensional tests
in DA. The right-hand side of Figure 2 shows the clustering that is formed. Three samples from Nigeria create
a group high on the F2 axis; however, one sample, Nig1, is detached from the group. Samples from Botswana
also form a distinct group, and the same is observed for samples from Kenya with the exception of three samples
(MS14, MS15, MS8) that are detached from the group. These results are in agreement with those obtained during
DA.

Figure 2: (LHS: PC loading biplot of trace elements in ore samples. RHS: PC score plot illustrating the differen-
tiation between ore samples according to their origin

3.5 Hierarchical Cluster Analysis (HCA)
Unlike DA, HCA does not assign a sample to a class (country), rather it separates the samples into clusters so
that the level of association is strong between samples in the same cluster and weak between samples in different
clusters [1]. This was achieved using Wards’ method with Euclidean distance to calculate the sample interpoint



distance. HCA was performed on uranium ore samples with trace element parameters as input variables. The
generated dendogram is shown in Figure 3 with a dissimilarity threshold of 52. The results indicate 5 distinct
clusters and one subgroup. C1 contained 5 samples labeled Bots6, Bots7, Bots8, Bots9 and Bots10 which are
all from Botswana. C2 is a cluster of 1 sample labeled Nig 1 while C3 contains samples labeled Nig 2, Nig 3,
Nig 4. Both clusters contain samples from Nigeria. The same can be observed with C4 and C5 which contain
samples from Kenya only. The separation of samples from similar countries into distinct clusters is evidence of
the discriminative ability of the trace element signature. This shows that the signature has the ability not only to
separate ores on the basis of country of origin but also to distinguish between samples for different regions within
the country, while still recognizing that the samples are related. The results obtained support the findings of PCA
and DA, showing regionally consistent clusters.

Figure 3: HCA dendrogram of uranium ore samples from three regions based on trace element concentrations

4 Conclusion
This study demonstrated that the trace element signature is forensically significant and could be applied in combi-
nation with REE signature to discriminate uranium ore/UOC samples from various countries and regions through-
out Africa for source attribution purposes. By using multiple multivariate statistical techniques (MANOVA, DA,
PCA, and HCA), the study showed how these techniques were effective tools for signature validation and inter-
pretation for source attribution. MANOVA revealed statistically significant differences among countries/regions
(Fstatistic > Fcritical, p < 0.05), indicating that trace element signature varies by source. Unidimensional test used
in DA identified Ti, Zn, Zr, Ce, Pr, Nd, Eu and Pd as key elements driving the differences between samples of
different origins. The classification model developed using trace element parameters was found to have predictive
accuracy of 91.76%. Further demonstrating the strength of the trace element signature for classification. Results
from PCA and HCA also demonstrated that trace element signature could be used to distinguish samples of un-
known origin. The application of both tools resulted in clusters that were consistent with the sampling locations.
Although the results revealed that the trace element signature is a good geographical signature, the sample size
was small and the sample sizes were not balanced between the countries. To strengthen these findings, extensive



research is required on a larger set of uranium ore samples from sources across the continent. In addition, incorpo-
rating machine learning techniques would improve classification and prediction accuracy and assist in developing
a comprehensive continental reference database for nuclear forensic applications.
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