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Abstract. The search for new physics is one of the key goals of the ATLAS Collaboration. With
the discovery of the Higgs boson in 2012, the Standard Model (SM) gained an essential ingredi-
ent towards the understanding of fundamental particles and their interactions — but it cannot yet
be considered complete. The nature of dark matter (DM), which constitutes about 27% of the
universe, remains a major open question. Dark matter may belong to a complex “dark sector”
of particles beyond the SM, with its own internal symmetries and interactions. Among these
hypothetical particles, the "dark photon" (γd) is a predicted mediator for interactions within this
sector. If dark photons couple to SM particles, they could be produced in high-energy proton-
proton collisions at the LHC and detected by the ATLAS experiment. This study investigates
the production of γd via Higgs boson decay H → Z + γd, where the Z boson decays into two
leptons of the same flavor and opposite sign (e+e− or µ+µ−), and the undetected γd results in
missing transverse energy (Emiss

T ). The resulting final state, e+e−/µ+µ− + Emiss
T , provides a

distinct signature for the presence of γd. However, the SM presents several physics processes
with similar final states that are produced with a higher probability in pp collisions. To distin-
guish the γd signal from these backgrounds, Machine Learning (ML) algorithms are employed.
Algorithms such as Boosted Decision Trees (BDT), Deep Neural Networks (DNN), and Graph
Neural Networks (GNN) are trained on ATLAS Monte Carlo simulation data to identify the most
effective method for signal-background discrimination. The selected model is then applied to
ATLAS data to enhance sensitivity in the search for dark photons.

1 Introduction
The nature of dark matter (DM) remains an open major question. Although there is strong astrophysical evidence
suggesting the existence of dark matter with a density about five times higher than ordinary baryonic matter, its
fundamental nature is unknown [1]. DM could be part of a dark sector and potentially interacting with the SM
sector. The dark sector is assumed to exist as a world parallel to our own [?]. It is a hypothetical collection of fields
and particles predicted as possible SM extensions with no direct interactions, which couples extremely weakly to
SM through mediating particles such as dark photons ("portal" interactions). Dark photons are predicted in hidden-
sector models with an unbroken dark U(1) gauge symmetry, which either kinetically mixes with the SM photon or
couple to the Higgs sector via mediators and could be produced through portals: vector portal (spin 1), Higgs portal
(scalar), neutrino portal (spin 1/2) and axion portal (pseudo-scalar). From these possible portals, the vector portal
is the one where the interaction results from the kinetic mixing between one dark and one visible Abelian gauge
boson. The visible photon is taken to be the boson of the U (1) gauge group of electromagnetism or, above the
electroweak symmetry-breaking scale, of the hyper charge, while the dark photon is identified as the boson of an
extra U(1) symmetry [2][?]. Due to its kinetic mixing with the visible photon, the dark photon can still be detected



even though it is dark. This kinetic mixing provides the portal linking the dark and visible sectors. It is this portal
that makes it possible to detect the dark photon in the experiments. Looking beyond particles physics and towards
cosmology, many dark photons models were introduced to improve astroparticle and cosmology models. It could
also help with the Yukawa hierarchy and the small-scale structure formation problems in cosmology.

1.1 H → Z + γd Theoretical Framework
We use a minimal model to generate at 1-loop where H → γγd, Zγd decays as shown in Figure 4. The model
introduces two scalar messengers: SU(2)L doublet SL and SU(2)L scalar singlet SR. The scalar messengers mix
with the Higgs field via a generic interaction Lagrangian:

L ∼ µ (H†SLSR + h.c.)

which is manifestly SU(2)L invariant, and µ is a mass parameter.

Figure 1: Feynman diagrams of the H → γγd, Zγd decays.

The Branching Ratios of H → γγd, Zγd, γdγd, γγ have the following model-independent parameterization:
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where F ∼ 6.5 comes from the SM H → γγ form factor, and ∆ depends on the mass difference of the two scalars.



1.2 The ATLAS Detector
The ATLAS detector at the LHC is a multi-purpose particle detector. With a forward–backward symmetric with
respect to the interaction point. It consists of an inner tracking detector (ID) surrounded by thin superconducting
solenoid, electromagnetic, and hadron calorimeters, as well as a muon spectrometer incorporating three large super-
conducting air-core toroidal magnets [?]. The inner detector system (ID) is s surrounded by a 2 T superconducting
solenoidal field. The ID tracks charged particles, allowing for particle identification and vertex measurements. The
system provides charged-particle tracking in the range of |η| < 2.5 . The electromagnetic calorimeter (EM-CAL)
surrounds the ID and absorbs energy from particles that interact electromagnetically as they move through the
detector. The EMCAL covers |η| < 3.2. The Hadronic calorimeter (HCAL) surrounds the EM calorimeter and is
made up of steel plates and plastic scintillator plates which absorb energy from hadrons. These HCAL constituents
provide hadronic coverage of |η| < 1.7, and LAr technology is also used for the HCAL end-cap region. The entire
HCAL covers a pseudorapidity range of |η| < 4.9 [2]. The muon spectrometer defines the overall dimensions
of the ATLAS detector [2]. It consists of three large superconducting toroid systems of high-precision tracking
chambers that provide exceptional muon momentum measurement.

1.3 Search for H → Z + γd
The signal process of a Higgs boson decaying into a Z boson and an invisible dark photon was generated in the ZH
production mode. The signal events are the gluon-gluon fusion and the vector-boson fusion processes. The signal
region is defined by the e+e−/µ+µ− + Emiss

T final state. The two same-flavour, oppositely charged leptons come
from a Z boson decay, the photon comes from the Higgs boson decay, and the Emiss

T comes from the undetected
dark photon. The analysis is affected by a large variety of background processes. The irreducible backgrounds
come from (VVγ) final states where V is any of the W/Z bosons with both bosons decaying leptonically and
associated production of a Z and Higgs boson decaying to neutrinos and bosons. Reducible backgrounds come
from Emiss

T , most likely due to undetected particles or hadronic jets not fully contained in the detector acceptance or
from particle misidentification. The top-quark pair production with both tops decaying leptonically and the single
top production with leptons and b-jets. This is ongoing work; Table 2 lists the event kinematic selections that have
been applied to both the signals events (ggHZγd and VBFHZγd) and background events (llvv, tt̄ and Z+ jets),so
far.

Two leptons (e+e− / µ+µ)

Leading pT > 27 GeV and sub-leading pT > 15 GeV

Electron η cut: |η| < 2.47, exclude 1.37 < |η| < 1.52

Muon η cut: |η| < 2.7

Dilepton invariant mass: 65 GeV < mℓℓ < 110 GeV

Missing transverse energy MET > 15 GeV

Njet ≤ 2, with pjet
T > 30 GeV, |η| < 4.5

Table 1: Kinematic selection criteria for the ℓ+ℓ− + Emiss
T signal region.

1.4 Machine Learning
Machine learning (ML) is a process by which a computer is able to complete a task without explicit instruction,
but through inference and patterns. This is done by first training the algorithm using sample (training) data that
is a representation of the data that the algorithm will be used to analyze[3]. ML algorithms can be divided into
two types: Supervised algorithms learn how to match inputs to outputs based on example input-output pairs in the
training data. The algorithm requires a target class, referred to as labels, for the collection of features. Supervised
algorithms can be further sub-divided into classification and regression tasks. Classification tasks are those that
wish to predict whether the data falls into some category or another. Regression tasks aim to model the relation-
ship between a dependent(target) and independent (predictor) variables with one or more independent variables.
Unsupervised algorithms are those that do not have labels, they find patterns inherent in the data structure. Tasks
can be split into: clustering, association and dimensionality reduction. Clustering is a data mining technique that



groups unlabeled data based on some similarity measure. Association looks for relationships between variables in
a given dataset. Dimensionality reduction looks to represent data in a lower dimensional form, whilst preserving
the data integrity[3]. This aids in processes like noise reduction, data visualisation, and clustering.

1.5 Signal Region Optimization
To improve the sensitivity of the search for γd signal, the boosted decision tree (BDT) algorithm was implemented
using the XGBoost classifier [3]. For training and testing the model, all events entering the SR are used. All signal
events are assigned to the positive label (y = 1) and all background events are assigned to the negative label (y =
0) in the training data. Training was done on 75% and testing was done on 25%. To train the model the feature set
consisting of the input variables shown in Table 2 was used.

pT lepton, ∆R (lepton)

MET , MET significance

∆ϕ (MET,Z)

∆ϕ (MET, γd)

pz (longitudinal γd)

mT (ll, MET) discriminant variable for global fit

Table 2: Input variables for the BDT

2 Results
This section will cover the preliminary results that were achieved from implementing the kinematic selection cri-
teria shown in Table 2. The results are a comparison of MET for the signal distributions (ggHZγd and VBFHZγd)
and background distributions (llvv and tt̄). As well as the preliminary results of the BDT study.

2.1 Signal distributions

Figure 2: (left) Missing Transverse Energy for the signal: ggHZγd. (right) Missing Transverse Energy for signal:
VBFHZγd.



2.2 Background distributions

Figure 3: (left) MET for the background: llvv. (right) MET for the background: tt̄

2.3 Preliminary BDT study

Figure 4: (left) Decision scores for BDT (right) ROC Curve



3 Conclusion
Searches for dark photons offer new opportunities to explore the Dark Sector fundamental structure and its connec-
tion to the Standard Model of known particles. In particular, the existence of a H → ZγD decay would be a clear
signature of the “Higgs Portal” to the Dark Sector. The very preliminary results presented are the first tentative
attempt at the LHC to search for such a signal. An extensive study of SM background processes is under way,
as well as an optimisation of Machine Learning algorithms for new physics signal extraction using the ATLAS
detector data collected in pp collisions at 13 TeV and 13.6 TeV.
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