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Abstract: Groundwater is a major source of freshwater in rural and peri-urban communities in the developing 

world. In this study, a fuzzy logic method based on the concept of fuzzy set theory was investigated for assessing 

the physicochemical properties of groundwater for drinking purposes. The application of fuzzy-based criteria 

was demonstrated using limits prescribed by the South African National Standards (SANS) for water quality. 

Both deterministic and fuzzy logic methods were applied to forty-two groundwater samples collected from rural 

communities in the North-West Province of South Africa. Ten key parameters including total hardness (TH), 

calcium (Ca²⁺), magnesium (Mg²⁺), electrical conductivity (EC), pH, iron (Fe²⁺), chloride (Cl⁻), sulphate (SO₄²⁻), 

fluoride (F⁻), and nitrate (NO₃⁻) were selected for their significant influence on groundwater quality. Water 

quality classes were expressed using four linguistic terms often used by experts: “excellent,” “good,” “fair,” and 

“unacceptable.” The fuzzy logic classification yielded 31% of samples as “unacceptable”, 0% as “fair”, 50% as 

“good”, and 19% as “excellent”, with associated degrees of certainty ranging from 25% to 80%. The findings 

clearly indicate that the existing classification criteria fail to provide the necessary degree of overlapping 

definitions required for effective fuzzy logic model implementation. 
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1. Introduction 

Groundwater quality for drinking purposes is as important as its availability. Even after using standard sampling 

techniques and analysis for monitoring water quality, the final decision based on this data is an essential step, as 

uncertainties are inherent at every stage. The prescribed limits for various quality indicators in drinking water 

are proposed by both local and international organizations, like the South African National Standards (SANS) 

and the World Health Organization [1, 2]. These regulatory limits contain uncertainties, as these are extrapolated 

values from localized studies [3, 4]. Information on the condition and regional trends in water quality is necessary 

to evaluate suitable guidelines, quality assessment, and adoption of prescribed limits by relevant regulatory 

bodies. The literature presents various methods for evaluating drinking water quality and classification [1, 4]. 

Nonetheless, most studies adopt a deterministic framework, in which water quality parameters are assessed 

solely by comparing their measured values with some standards established by regulatory authorities. Such an 

approach fails to account for the inherent uncertainties present at different stages of the evaluation process, 

potentially limiting the reliability and robustness of the resulting decisions [4, 5]. Among the various approaches 

developed over the past few decades, the Water Quality Index (WQI) has emerged as one of the most widely 

applied methods for assessing water quality. However, this approach has notable limitations, as certain 

parameters within the index equations can disproportionately influence the overall decision, often without 

sufficient scientific justification. Consequently, there is a need for more advanced classification methods capable 

of accommodating these uncertainties when evaluating drinking water quality.  

Water quality experts typically classify water as “desirable”, “acceptable”, and “unacceptable” based on 

guideline values established by various regulatory bodies [3]. However, in borderline cases, making a clear 

decision becomes challenging due to the multiple sources of uncertainty inherent in the process. Such 

uncertainties may arise at different stages, including sampling and analysis, selection of quality criteria, and 

imprecision in the final decision output values. Therefore, the monitored data and regulatory limits should not 

be treated as crisp sets but rather as fuzzy sets that can better account for inherent variability and imprecision. 

Few studies have proposed that fuzzy set-based approaches be utilized to manage the uncertainties associated 

with drinking water quality assessment [3, 6, 7]. Considering the critical importance of uncertainty handling in 

evaluating drinking water quality, and the proven flexibility of fuzzy set theory in supporting decisions under 

imprecise conditions, this study applies a fuzzy classification approach to assess groundwater quality for 

drinking purposes in rural communities of the North-West Province, South Africa. 

 

1.1 Fuzzy set theory 

Fuzzy set theory is particularly well-suited for decision-making in complex systems where the problem context 

is often unclear or imprecise. It is commonly employed to handle uncertain or vague information in a non-

probabilistic manner, enabling the integration of multiple parameters into modelling and evaluation processes. 

The concept of fuzzy sets, which describes imprecision and vagueness, was first introduced by Zadeh [8] and 

has since been widely applied in decision-making and evaluation across various fields under uncertain conditions 

[9, 10]. Fuzzy set theory can be regarded as a generalization of classical set theory. In classical set theory, the 

membership function of a set takes the value 1 for elements within the set and 0 for elements outside it. By 

contrast, a fuzzy set is defined by a membership function that maps elements from the domain of interest, such 



as concentration measurements, onto a continuous interval between 0 and 1. The shape of the membership 

function curve reflects the degree to which a specific value belongs to a given set, thereby providing a weighting 

that captures partial membership. Mathematically, the membership function of a fuzzy set A, defined over a 

domain X, is expressed as: 

µ𝐴 ∶ 𝑋 → [0, 1]   (1) 

The set A is defined in terms of its membership function by 

 

µ𝐴 : {

1                     𝑥 𝑖𝑠 𝑓𝑢𝑙𝑙 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴

 𝜖(0,1)        𝑥 𝑖𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓𝐴
0                    𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴

 }   (2) 

 

For a set to be considered a fuzzy set, its membership function µ𝐴 must satisfy specific conditions to ensure that 

classical set operations such as complement, union, and intersection are consistently extended to fuzzy sets.  

 

𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 ∶ µ𝑝𝐻 =

{
 
 
 

 
 
 
0,                                𝑖𝑓 𝑥 ≤  6.3           
𝑥 −  6.3

6.5 −  6.3
,               𝑖𝑓 𝑥 𝜖 [6.3, 6.5)      

1.0,                           𝑖𝑓 𝑥  𝜖 (6.5, 7.5)  
7.8 −  𝑥

7.8 −  7.5
,               𝑖𝑓 𝑥 𝜖 (7.5, 7.8]      

0,                               𝑖𝑓  𝑥 ≥  7.8           }
 
 
 

 
 
 

                                                                         (3) 

 

 

𝐺𝑜𝑜𝑑 ∶ µ𝑝𝐻 =

{
 
 
 
 
 

 
 
 
 
 

0,                              𝑖𝑓 𝑥 ≤  5.9           
𝑥 − 5.9

6.0 − 5.9
,                    𝑖𝑓 𝑥 𝜖 [5.9, 6.0)    

1.0,                            𝑖𝑓 𝑥 𝜖 (6.0, 6.4)     
6.5 − 𝑥

6.5 − 6.4
,                    𝑖𝑓 𝑥 𝜖 (6.5, 6.4)    

 0,                              𝑖𝑓 𝑥 = 6.5              
𝑥 − 7.5

7.7 − 7.5
,                     𝑖𝑓 𝑥 𝜖(7.5, 7.7)      

1.0,                             𝑖𝑓 𝑥 =  (7.7, 8.3)  
8.5 − 𝑥 

8.5 − 8.3
,                       𝑖𝑓 𝑥 𝜖 (8.3, 8.5]       

0,                                𝑖𝑓 𝑥 ≥  8.5             }
 
 
 
 
 

 
 
 
 
 

   (4) 

 

𝐹𝑎𝑖𝑟 ∶ µ𝑝𝐻 =

{
 
 
 
 
 

 
 
 
 
 
0,                            𝑖𝑓 𝑥 ≤  5.5         
𝑥 − 5.5

5.6 − 5.5
,                    𝑖𝑓 𝑥 𝜖 [5.5, 5.6)    

1.0,                         𝑖𝑓 𝑥 𝜖 (5.6, 5.9)  
6.0 − 𝑥

6.0 − 5.9
,                    𝑖𝑓 𝑥 𝜖 (5.9, 6.0)    

0,                             𝑖𝑓 𝑥 𝜖 (6.0, 8.0)   
𝑥 − 8.3

8.5 − 8.3
,                   𝑖𝑓 𝑥 𝜖 (8.3, 8.5)    

1.0,                          𝑖𝑓 𝑥 𝜖 (8.5, 9.5)    
9.7 − 𝑥 

9.7 − 9.5
,                  𝑖𝑓 𝑥 𝜖 (9.5, 9.7]    

0,                            𝑖𝑓 𝑥 ≥  9.7           }
 
 
 
 
 

 
 
 
 
 

                                                                       (5)  

 

𝑈𝑛𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 ∶ µ𝑝𝐻 = {

 1.0,                𝑖𝑓 𝑥 <  5.5   
0,                   𝑖𝑓 𝑥 >  5.5   

 1.0,              𝑖𝑓  𝑥 >  9.7  
}  (6) 

 

The membership function can be normalized by dividing it by its maximum value so that it attains a value of 

one at least once within the domain X. The use of fuzzy numbers, along with the aggregation of fuzzy sets, has 

been proposed as an effective technique for managing uncertainties in decision-making related to environmental 

quality criteria [11, 12]. The complete analytical procedure for the fuzzy logic evaluation model includes 

regulatory criteria and classification, selection of water quality parameters, fuzzification of water quality 

parameters, fuzzy relationship matrix, rule-based creation, defuzzification, and performance evaluation [3]. 

 



 

2. Data Analysis 

A total of 42 groundwater samples were collected during the study conducted by Masindi and Foteinis [1] from 

different locations in the rural areas of North-West Province, following standard sampling protocols. These 

groundwater sources are primarily used for drinking purposes. The samples were analysed for 13 

physicochemical water quality parameters in accordance with standard analytical procedures. Initial water 

quality decisions were made using a deterministic approach based on guideline values prescribed by South 

African National Standards (SANS) and the classification values proposed by Masindi and Foteinis [1]. In this 

approach, each parameter was evaluated independently, resulting in separate classifications. The same 

classification values were used in the fuzzy logic model to evaluate groundwater quality for drinking purposes. 

The most significant determinants of drinking water quality from the 13 analysed parameters, including pH, 

electrical conductivity (EC), total hardness (TH), chloride (Cl⁻), calcium (Ca²⁺), iron (Fe²⁺), magnesium (Mg²⁺), 

sulphate (SO₄²⁻), fluoride (F⁻), and nitrate (NO₃⁻), were considered [3]. In the fuzzy logic approach, these 10 

parameters were grouped into four categories described as drinking water limit (group A), aesthetic limit (group 

B), fluoride, and nitrate in line with rural groundwater quality conditions, and to reduce computational 

complexity. Specifically, pH, Fe²⁺, Cl⁻, and SO₄²⁻ were classified as the first group, EC, TH, Ca²⁺, and Mg²⁺ formed 

the second group, F⁻ and NO₃⁻ were treated as separate parameters due to their critical significance in drinking 

water quality criteria. Fuzzy membership functions were developed for all 10 selected parameters using the 

trapezoidal membership function, representing possible concentration of a water quality parameter onto degrees 

of membership ranging from 0 to 1 (Eqns. 1-2). The transformation of water quality parameters into linguistic 

terms such as “excellent”, “good”, “fair”, and “unacceptable” is illustrated with the pH parameter defined by 

Eqns. (3) – (6). The input parameters in each group, and the combination of the groups with fluoride and nitrate 

were incorporated into the Mamdani fuzzy logic model for groundwater quality classification.  

In a fuzzy rule-based system, expert knowledge on the classification of an object, in this case, water quality 

parameters, is expressed in the form of IF–THEN rules. Each rule consists of a set of antecedent propositions 

that include attribute names, such as pH, EC, TH, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻, F⁻, and NO₃⁻, along with their corresponding 

attribute values or linguistic descriptors such as “excellent”, “good”, “fair”, or “unacceptable”. These linguistic 

descriptions are inherently imprecise, reflecting both the limited understanding of the individual and the 

combined health impacts of these parameters on rural communities. This linguistic fuzzy logic model was 

employed, where both the antecedent and consequent components are expressed as fuzzy propositions. A 

computational framework for fuzzy logic in MATLAB version 2021b was utilized to estimate the relationship 

between the consequent and the antecedent parts of the rules. This approach enables the drinking water quality 

to be described in a fuzzy manner, with an associated degree of certainty. 

In this study, a total of 80 fuzzy rules formulated based on domain knowledge of drinking water quality were 

applied using the Mamdani inference approach with the max–min operator to evaluate groundwater quality [12]. 

Representative rules developed based on the domain knowledge were designed for the groups and their 

combination with fluoride, and nitrate. A sample rule from the 24 rules created for the physicochemical 

parameters in group A is presented below.  

Rule 1: If pH is “excellent”; iron is “fair”; chloride is “good”; sulphate is “good”; Then: groundwater sample 

quality is “good” for drinking purposes. 

For the second group, a representative rule from the 16 rules formulated for drinking water quality classification 

is presented below. 

Rule 1: If TH is “excellent”; calcium is “fair”; magnesium is “good”; EC is “good”; Then: groundwater sample 

quality is “good” for drinking purposes. 

The outputs from groups A and B were subsequently combined with the other two parameters to derive the final 

water quality classification. In total, 40 fuzzy rules were applied within the fuzzy logic system, integrating the 

results of the first and second groups with fluoride, and nitrate. A representative rule encompassing the two 

groups, and the two parameters is presented below. 

Rule 1: If group A is “fair”; group B is “good”; fluoride is “fair”; nitrate is “good”; Then: groundwater sample 

quality is “fair” for drinking purposes. 

 

3. Results 

In the deterministic approach, the physicochemical quality of drinking water was assessed by directly comparing 

the measured concentrations of the 10 selected parameters with the prescribed threshold values. Deterministic 

assessment of drinking water quality, based on measured values compared to prescribed limits set by 

organizations such as WHO or SANS, typically yields results expressed in linguistic terms such as “excellent”, 

“good”, “fair”, or “unacceptable” as shown in Table 2. Similarly, in the Water Quality Index (WQI) approach, 

the overall water quality may still be classified as “excellent” even if some critical parameters have been assigned 

little or no weight, potentially masking important risk factors [5]. 

 



Physicochemical parameters SANS limits Excellent Good Fair Unacceptable 

pH 5.5 - 9.7 7 6 or 8 5 or 9 <5 or >10 

EC (mS/m) 170 85 127.5 170 >170 

Total Hardness (mg/l) 300 150 225 300 >300 

Magnesium, Mg²⁺ (mg/l) 100 50 75 100 >100 

Calcium, Ca²⁺ (mg/l) 300 150 225 300 >300 

Iron, Fe²⁺ (µg/L) 2000 1000 1500 2000 >2000 

Chloride, Cl⁻, (mg/l) 300 150 225 300 >300 

Fluoride, F⁻ (mg/l) 1.5 0.75 1.125 1.5 >1.5 

Sulphate, SO₄²⁻ (mg/l) 500 250 375 500 >500 

Nitrate, NO₃⁻ (mg/l) 11 5.5 8.25 11 >11 

Table 1. The limits prescribed by South African National Standards and their proposed classification by  Masindi 

and Foteinis [1] 

 

 
Fig. 1. Trapezoidal membership function of pH parameter with four quality categories                                    

 

Decision using deterministic method 

Decision using 

FL 

Excellent Good Fair Unacceptable  

1.TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻   NO₃⁻ Unacceptable (38) 

2. Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ TH; pH  NO₃⁻ Unacceptable (38) 

3. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻;  NO₃⁻ TH F⁻ Unacceptable (38) 

4. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ TH  NO₃⁻ Unacceptable (38) 

5. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻   NO₃⁻ Unacceptable (38) 

6. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻;  TH  NO₃⁻ Unacceptable (38) 

7. Ca²⁺; Mg²⁺; pH, Fe²⁺; F⁻ SO₄²⁻ TH EC; Cl⁻; NO₃⁻ Good (67) 

8. Ca²⁺; Fe²⁺; F⁻ pH Cl⁻ TH; Mg²⁺; EC; SO₄²⁻; NO₃⁻  Good (67) 

9. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻ TH   Excellent (72) 

10. Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ pH  TH; NO₃⁻ Good (67) 

11. Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻ TH, pH   Excellent (72) 

12. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ TH  NO₃⁻ Unacceptable (38) 

13. Ca²⁺; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ EC; pH Mg²⁺ TH; NO₃⁻ Good (67) 

14. Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻  TH; pH  Good (25) 

15. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻    Excellent (80) 

16. Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ TH; pH NO₃⁻  Good (51) 

17. TH; Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻, F⁻ pH NO₃⁻  Good (51) 

18. Ca²⁺; Mg²⁺; pH; Fe²⁺; SO₄²⁻; F⁻; NO₃⁻ EC; Cl⁻ TH  Excellent (72) 

19. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻   TH; NO₃⁻ Good (67) 

20. Ca²⁺; Mg²⁺; pH; Fe²⁺; Cl⁻; SO₄²⁻ EC  TH; F⁻; NO₃⁻ Good (67) 

21. Ca²⁺; pH; Fe²⁺; SO₄²⁻ Mg²⁺ F⁻ TH; EC; Cl⁻; NO₃⁻ Good (67) 



22. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻ TH NO₃⁻ F⁻ Good (67) 

23. Ca²⁺; pH; Fe²⁺; SO₄²⁻ Mg²⁺; F⁻ Cl⁻ TH; EC; NO₃⁻ Good (67) 

24. Ca²⁺; Mg²⁺; pH; Fe²⁺; Cl⁻; SO₄²⁻ F⁻ EC TH; NO₃⁻ Good (67) 

25. Ca²⁺; Mg²⁺; Fe²⁺; Cl⁻; SO₄²⁻; NO₃⁻ EC; pH  F⁻; TH Good (67) 

26. Ca²⁺; Mg²⁺; pH; Fe²⁺; SO₄²⁻ F⁻  TH; EC; Cl⁻; NO₃⁻ Good (67) 

27. Ca²⁺; Mg²⁺; pH; Fe²⁺; Cl⁻; SO₄²⁻ EC F⁻ TH; NO₃⁻ Good (67) 

28. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻ TH  F⁻; NO₃⁻ Unacceptable (38) 

29. TH; Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; NO₃⁻ pH  F⁻ Unacceptable (38) 

30.TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻  F⁻ NO₃⁻ Good (67) 

31. Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; NO₃⁻ TH  F⁻ Unacceptable (38) 

32. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻ F⁻; NO₃⁻   Good (67) 

33. TH; Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; NO₃⁻ pH  F⁻ Unacceptable (38) 

34. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; NO₃⁻   F⁻ Unacceptable (38) 

35. Ca²⁺; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ Mg²⁺; EC; pH  TH; NO₃⁻ Good (67) 

36. pH; Fe²⁺; SO₄²⁻ Ca²⁺ 
Mg²⁺; 
F⁻ TH; EC; Cl⁻; NO₃⁻ Unacceptable (38) 

37. TH; Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ pH  NO₃⁻ Good (67) 

38. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻, F⁻; NO₃⁻    Excellent (72) 

39. TH; Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻ pH   Excellent (72) 

40. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻ NO₃⁻   Good (67) 

41. TH; Ca²⁺; Mg²⁺; EC; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻ pH   Excellent (72) 

42. TH; Ca²⁺; Mg²⁺; EC; pH; Fe²⁺; Cl⁻; SO₄²⁻; F⁻; NO₃⁻    Excellent (72) 
 

Table 2.  Comparison of groundwater quality classification by deterministic and fuzzy logic approach 

 

Fluoride was considered one of the most critical parameters, because its concentration exceeds 1.5 mg/l 

recommended by SANS in drinking water which can lead to severe health impacts, including skeletal and dental 

fluorosis [3]. Accordingly, an exclusive fuzzy rule was defined such that any sample with a fluoride 

concentration above 1.5 mg/l would be classified as “unacceptable.” However, the degree of certainty for this 

classification was further refined based on the consideration of other parameters. In the Mamdani max–min 

inference system, the minimum membership value from each rule is first determined using the fuzzy “min” 

operator, subsequently, the maximum value from this set of minimums is selected, representing the degree of 

belongingness of the water sample to a specific quality category [3]. In this study, the mean of maxima 

defuzzification method was employed. Based on this approach, the results of all 42 groundwater samples were 

evaluated and are presented in Table 2. The fuzzy logic method proved particularly valuable for samples with 

parameter values falling within the safety margin. In such cases, uncertainty plays a critical role in decision-

making, as the likelihood of decision errors increases when values are near threshold limits.  

A comparison between the decisions derived from the fuzzy logic model and those obtained through 

deterministic evaluation is presented in Table 2. The results indicate that the water quality of sample 15 is 

classified as “excellent” with the highest certainty level of 80%, followed by 7 other samples with a certainty 

level of 72%. For example, in the case of borehole sample 15 evaluated using the deterministic approach, all 

parameters (TH, Ca²⁺, Mg²⁺, EC, pH, Fe2+, Cl⁻, SO4
2⁻, F⁻, NO₃⁻) were classified as excellent, for borehole sample 

18, seven parameters (Ca²⁺; Mg²⁺; pH; Fe²⁺; SO₄²⁻; F⁻; NO₃⁻) were classified as excellent, two parameters (EC 

and Cl⁻) were placed in the good category, while total hardness fell into the fair category. Such a fragmented 

decision regarding drinking water quality often provides an ambiguous picture, even for scientists and engineers, 

and becomes even more challenging when this information must be communicated to the general population. 

The drawback in the implementation of the proposed classification values by Masindi and Foteinis [1] into fuzzy 

logic model illustrated in Fig. 1. In all the categories, which include “excellent”, “good”, “fair”, and 

“unacceptable”, there exists a strong overlap between “excellent” and “good” categories, whereas a little overlap 

exists between the “fair” and “unacceptable” categories. In the same vein, the remaining 9 parameters (EC, TH, 

Mg²⁺, Ca²⁺, Fe2+, Cl⁻, F⁻, SO4
2⁻, and NO₃⁻) in Table 1 shows no clear distinction between these two categories; 

hence, the fuzzy logic model places the two categories exclusively within the “unacceptable” range. 

 

 

  



4. Conclusion 

In this paper, groundwater quality in rural areas of South Africa was comprehensively examined using the 

deterministic and fuzzy logic approach, which helped in overcoming certain limitations associated with 

conventional approach used for groundwater quality indexing. The Fuzzy logic classification with certainty level 

to each linguistic term, makes the classification more informative and reliable. Decisions expressed as linguistic 

categories accompanied by certainty levels are far more convincing and easier to communicate, particularly to 

the general populace. Given the multiple sources of uncertainty involved at various stages of water quality 

decision-making, the fuzzy logic method provides a more robust and realistic representation of water quality. 

This study highlights the reliability and robustness of fuzzy logic models in handling risk assessment problems 

involving uncertainties, imprecision, overlapping boundaries and the need for appropriate classification criteria 

for fuzzy model implementation.  
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