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Abstract: Groundwater is a major source of freshwater in rural and peri-urban communities in the developing
world. In this study, a fuzzy logic method based on the concept of fuzzy set theory was investigated for assessing
the physicochemical properties of groundwater for drinking purposes. The application of fuzzy-based criteria
was demonstrated using limits prescribed by the South African National Standards (SANS) for water quality.
Both deterministic and fuzzy logic methods were applied to forty-two groundwater samples collected from rural
communities in the North-West Province of South Africa. Ten key parameters including total hardness (TH),
calcium (Ca?*), magnesium (Mg?"), electrical conductivity (EC), pH, iron (Fe?**), chloride (CI"), sulphate (SO+*),
fluoride (F°), and nitrate (NOs") were selected for their significant influence on groundwater quality. Water
quality classes were expressed using four linguistic terms often used by experts: “excellent,” “good,” “fair,” and
“unacceptable.” The fuzzy logic classification yielded 31% of samples as “unacceptable”, 0% as “fair”, 50% as
“good”, and 19% as “excellent”, with associated degrees of certainty ranging from 25% to 80%. The findings
clearly indicate that the existing classification criteria fail to provide the necessary degree of overlapping
definitions required for effective fuzzy logic model implementation.
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1. Introduction

Groundwater quality for drinking purposes is as important as its availability. Even after using standard sampling
techniques and analysis for monitoring water quality, the final decision based on this data is an essential step, as
uncertainties are inherent at every stage. The prescribed limits for various quality indicators in drinking water
are proposed by both local and international organizations, like the South African National Standards (SANS)
and the World Health Organization [1, 2]. These regulatory limits contain uncertainties, as these are extrapolated
values from localized studies [3, 4]. Information on the condition and regional trends in water quality is necessary
to evaluate suitable guidelines, quality assessment, and adoption of prescribed limits by relevant regulatory
bodies. The literature presents various methods for evaluating drinking water quality and classification [1, 4].
Nonetheless, most studies adopt a deterministic framework, in which water quality parameters are assessed
solely by comparing their measured values with some standards established by regulatory authorities. Such an
approach fails to account for the inherent uncertainties present at different stages of the evaluation process,
potentially limiting the reliability and robustness of the resulting decisions [4, 5]. Among the various approaches
developed over the past few decades, the Water Quality Index (WQI) has emerged as one of the most widely
applied methods for assessing water quality. However, this approach has notable limitations, as certain
parameters within the index equations can disproportionately influence the overall decision, often without
sufficient scientific justification. Consequently, there is a need for more advanced classification methods capable
of accommodating these uncertainties when evaluating drinking water quality.

Water quality experts typically classify water as “desirable”, “acceptable”, and “unacceptable” based on
guideline values established by various regulatory bodies [3]. However, in borderline cases, making a clear
decision becomes challenging due to the multiple sources of uncertainty inherent in the process. Such
uncertainties may arise at different stages, including sampling and analysis, selection of quality criteria, and
imprecision in the final decision output values. Therefore, the monitored data and regulatory limits should not
be treated as crisp sets but rather as fuzzy sets that can better account for inherent variability and imprecision.
Few studies have proposed that fuzzy set-based approaches be utilized to manage the uncertainties associated
with drinking water quality assessment [3, 6, 7]. Considering the critical importance of uncertainty handling in
evaluating drinking water quality, and the proven flexibility of fuzzy set theory in supporting decisions under
imprecise conditions, this study applies a fuzzy classification approach to assess groundwater quality for
drinking purposes in rural communities of the North-West Province, South Africa.

1.1 Fuzzy set theory

Fuzzy set theory is particularly well-suited for decision-making in complex systems where the problem context
is often unclear or imprecise. It is commonly employed to handle uncertain or vague information in a non-
probabilistic manner, enabling the integration of multiple parameters into modelling and evaluation processes.
The concept of fuzzy sets, which describes imprecision and vagueness, was first introduced by Zadeh [8] and
has since been widely applied in decision-making and evaluation across various fields under uncertain conditions
[9, 10]. Fuzzy set theory can be regarded as a generalization of classical set theory. In classical set theory, the
membership function of a set takes the value 1 for elements within the set and 0 for elements outside it. By
contrast, a fuzzy set is defined by a membership function that maps elements from the domain of interest, such



as concentration measurements, onto a continuous interval between 0 and 1. The shape of the membership
function curve reflects the degree to which a specific value belongs to a given set, thereby providing a weighting
that captures partial membership. Mathematically, the membership function of a fuzzy set A, defined over a
domain X, is expressed as:

i X > [0,1] (1)
The set A is defined in terms of its membership function by

1 x is full member of A
uu:4 €(0,1)  xispartial member of A 2)
0 x is not member of A

For a set to be considered a fuzzy set, its membership function p, must satisfy specific conditions to ensure that
classical set operations such as complement, union, and intersection are consistently extended to fuzzy sets.
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The membership function can be normalized by dividing it by its maximum value so that it attains a value of
one at least once within the domain X. The use of fuzzy numbers, along with the aggregation of fuzzy sets, has
been proposed as an effective technique for managing uncertainties in decision-making related to environmental
quality criteria [11, 12]. The complete analytical procedure for the fuzzy logic evaluation model includes
regulatory criteria and classification, selection of water quality parameters, fuzzification of water quality
parameters, fuzzy relationship matrix, rule-based creation, defuzzification, and performance evaluation [3].



2. Data Analysis

A total of 42 groundwater samples were collected during the study conducted by Masindi and Foteinis [1] from
different locations in the rural areas of North-West Province, following standard sampling protocols. These
groundwater sources are primarily used for drinking purposes. The samples were analysed for 13
physicochemical water quality parameters in accordance with standard analytical procedures. Initial water
quality decisions were made using a deterministic approach based on guideline values prescribed by South
African National Standards (SANS) and the classification values proposed by Masindi and Foteinis [1]. In this
approach, each parameter was evaluated independently, resulting in separate classifications. The same
classification values were used in the fuzzy logic model to evaluate groundwater quality for drinking purposes.
The most significant determinants of drinking water quality from the 13 analysed parameters, including pH,
electrical conductivity (EC), total hardness (TH), chloride (CI"), calcium (Ca**), iron (Fe**), magnesium (Mg?"),
sulphate (S0.>), fluoride (F), and nitrate (NOs), were considered [3]. In the fuzzy logic approach, these 10
parameters were grouped into four categories described as drinking water limit (group A), aesthetic limit (group
B), fluoride, and nitrate in line with rural groundwater quality conditions, and to reduce computational
complexity. Specifically, pH, Fe*', CI-, and SO were classified as the first group, EC, TH, Ca*', and Mg** formed
the second group, F- and NOs- were treated as separate parameters due to their critical significance in drinking
water quality criteria. Fuzzy membership functions were developed for all 10 selected parameters using the
trapezoidal membership function, representing possible concentration of a water quality parameter onto degrees
of membership ranging from 0 to 1 (Eqns. 1-2). The transformation of water quality parameters into linguistic
terms such as “excellent”, “good”, “fair”, and “unacceptable” is illustrated with the pH parameter defined by
Eqns. (3) — (6). The input parameters in each group, and the combination of the groups with fluoride and nitrate
were incorporated into the Mamdani fuzzy logic model for groundwater quality classification.

In a fuzzy rule-based system, expert knowledge on the classification of an object, in this case, water quality
parameters, is expressed in the form of IF-THEN rules. Each rule consists of a set of antecedent propositions
that include attribute names, such as pH, EC, TH, Ca*>", Mg*, CI', SO+, F-, and NOs-, along with their corresponding
attribute values or linguistic descriptors such as “excellent”, “good”, “fair”, or “unacceptable”. These linguistic
descriptions are inherently imprecise, reflecting both the limited understanding of the individual and the
combined health impacts of these parameters on rural communities. This linguistic fuzzy logic model was
employed, where both the antecedent and consequent components are expressed as fuzzy propositions. A
computational framework for fuzzy logic in MATLAB version 2021b was utilized to estimate the relationship
between the consequent and the antecedent parts of the rules. This approach enables the drinking water quality
to be described in a fuzzy manner, with an associated degree of certainty.

In this study, a total of 80 fuzzy rules formulated based on domain knowledge of drinking water quality were
applied using the Mamdani inference approach with the max—min operator to evaluate groundwater quality [12].
Representative rules developed based on the domain knowledge were designed for the groups and their
combination with fluoride, and nitrate. A sample rule from the 24 rules created for the physicochemical
parameters in group A is presented below.

Rule 1: If pH is “excellent”; iron is “fair”’; chloride is “good”; sulphate is “good”; Then: groundwater sample
quality is “good” for drinking purposes.

For the second group, a representative rule from the 16 rules formulated for drinking water quality classification
is presented below.

Rule 1: If TH is “excellent”; calcium is “fair”’; magnesium is “good”; EC is “good”; Then: groundwater sample
quality is “good” for drinking purposes.

The outputs from groups A and B were subsequently combined with the other two parameters to derive the final
water quality classification. In total, 40 fuzzy rules were applied within the fuzzy logic system, integrating the
results of the first and second groups with fluoride, and nitrate. A representative rule encompassing the two
groups, and the two parameters is presented below.

Rule 1: If group A is “fair”; group B is “good”; fluoride is “fair”; nitrate is “good”; Then: groundwater sample
quality is “fair” for drinking purposes.

3. Results

In the deterministic approach, the physicochemical quality of drinking water was assessed by directly comparing
the measured concentrations of the 10 selected parameters with the prescribed threshold values. Deterministic
assessment of drinking water quality, based on measured values compared to prescribed limits set by
organizations such as WHO or SANS, typically yields results expressed in linguistic terms such as “excellent”,
“good”, “fair”, or “unacceptable” as shown in Table 2. Similarly, in the Water Quality Index (WQI) approach,
the overall water quality may still be classified as “excellent” even if some critical parameters have been assigned
little or no weight, potentially masking important risk factors [5].



Physicochemical parameters SANS limits  Excellent  Good Fair Unacceptable
pH 55-9.7 7 6or8 S5o0r9 <5 or>10
EC (mS/m) 170 85 127.5 170 >170
Total Hardness (mg/1) 300 150 225 300 >300
Magnesium, Mg (mg/1) 100 50 75 100 >100
Calcium, Ca>* (mg/1) 300 150 225 300 >300
Iron, Fe** (ug/L) 2000 1000 1500 2000 >2000
Chloride, CI, (mg/1) 300 150 225 300 >300
Fluoride, F- (mg/1) 1.5 0.75 1.125 1.5 >1.5
Sulphate, S0+ (mg/1) 500 250 375 500 >500
Nitrate, NOs~ (mg/1) 11 5.5 8.25 11 >11

Table 1. The limits prescribed by South African National Standards and their proposed classification by Masindi

and Foteinis [1]
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Fig. 1. Trapezoidal membership function of pH parameter with four quality categories

Decision using deterministic method

Decision using
FL

Excellent Good Fair Unacceptable
1.TH; Ca?"; Mg?*; EC; pH; Fe?; Cl7; SO+ F~ NOs~

2. Ca*'; Mg?*; EC; Fe**; Cl7; SO4*; F~ TH; pH NOs~

3. Ca*; Mg?; EC; pH; Fe?*; Cl; SO+ NOs~ TH F-

4. Ca*"; Mg?*; EC; pH; Fe?'; Cl; SO+ F~ TH NOs~

5. TH; Ca*"; Mg*; EC; pH; Fe*'; Cl; SO+*; F~ NOs~

6. Ca?"; Mg?; EC; pH; Fe?*; Cl; SO+*; F; TH NOs~

7. Ca*; Mg*'; pH, Fe**; F~ SO+ TH EC; CI; NOs~

8. Ca*"; Fe**; F~ pH Cl- TH; Mg?; EC; SO4*; NOs™
9. Ca?; Mg?"; EC; pH; Fe**; Cl7; SO+*; F; NOs~ TH

10. Ca?"; Mg?*; EC; Fe**; Cl; SO4*; F~ pH TH; NOs~

11. Ca*"; Mg?*; EC; Fe**; Cl7; SO4*; F; NOs~ TH, pH

12. Ca?"; Mg?*; EC; pH; Fe*'; Cl; SO4*; F- TH NOs~

13. Ca?"; Fe*"; Cl; SO+>; F- EC; pH Mg* TH; NOs~

14. Ca*"; Mg?*; EC; Fe**; Cl7; SO4*; F; NOs™ TH; pH

15. TH; Ca?"; Mg?"; EC; pH; Fe?*; Cl7; SO+*; F; NOs~

16. Ca?"; Mg?*; EC; Fe**; Cl7; SO4*; F~ TH; pH NOs~

17. TH; Ca?"; Mg*"; EC; Fe*'; Cl; SO+, F~ pH NOs~

18. Ca?"; Mg?*; pH; Fe*"; SO+*; F; NOs~ EC; CI TH

19. Ca*"; Mg?*; EC; pH; Fe*'; Cl; SO4>7; F- TH; NOs~

20. Ca*"; Mg?*; pH; Fe**; Cl; SO+* EC TH; F; NOs~
21. Ca*'; pH; Fe?**; SO+~ Mgt F TH; EC; Cl; NOs~

Unacceptable (38)
Unacceptable (38)
Unacceptable (38)

Unacceptable (38)
Unacceptable (38)
Unacceptable (38)
Good (67)

Good (67)
Excellent (72)
Good (67)
Excellent (72)
Unacceptable (38)
Good (67)

Good (25)
Excellent (80)
Good (51)

Good (51)
Excellent (72)
Good (67)

Good (67)

Good (67)



22. Ca*'; Mg*'; EC; pH; Fe*'; Cl-; SO4? TH NOs F Good (67)

23. Ca?"; pH; Fe?*; SO+ Mg F- Cl TH; EC; NOs~ Good (67)

24. Ca*'; Mg*'; pH; Fe?'; Cl7; SO4? F EC TH; NOs Good (67)

25. Ca*"; Mg*'; Fe?*; Cl7; SO42; NOs~ EC; pH F, TH Good (67)

26. Ca*"; Mg*'; pH; Fe*'; SO+ F TH; EC; CI; NOs Good (67)

27. Ca*; Mg*'; pH; Fe*'; Cl; SO+* EC F TH; NOs~ Good (67)

28. Ca*'; Mg*'; EC; pH; Fe*'; Cl; SO4? TH F; NOs Unacceptable (38)
29. TH; Ca?; Mg?*; EC; Fe?**; Cl7; SO+*; NOs~ pH F Unacceptable (38)
30.TH; Ca?; Mg?*; EC; pH; Fe?'; Cl7; SO4? F NO: Good (67)

31. Ca*"; Mg?*; EC; pH; Fe*'; Cl; SO42; NOs~ TH F Unacceptable (38)
32. TH; Ca?"; Mg?"; EC; pH; Fe?*; Cl7; SO4? F; NOs Good (67)

33. TH; Ca?"; Mg?"; EC; Fe*; Cl; SO+*"; NOs~ pH F Unacceptable (38)
34. TH; Ca?"; Mg?"; EC; pH; Fe?*; Cl7; SO42; NOs~ F Unacceptable (38)
35. Ca?'; Fe*'; Cl; SO F- Mg*; EC; pH TH; NOs~ Good (67)

2.

36. pH; Fe?**; SO+ Ca?" 1;’{% ’ TH; EC; Cl; NOs~ Unacceptable (38)
37. TH; Ca*; Mg*"; EC; Fe*; Cl; SO+*; F~ pH NOs~ Good (67)

38. TH; Ca?"; Mg?'; EC; pH; Fe?*; Cl-; SO+, F; NOs~ Excellent (72)

39. TH; Ca*"; Mg*'; EC; Fe*; Cl; SO4*7; F; NOs~ pH Excellent (72)

40. TH; Ca?*; Mg?*; EC; pH; Fe*'; Cl; SO+ F- NOs~ Good (67)

41. TH; Ca*"; Mg?"; EC; Fe*'; Cl; SO+*; F-; NOs™ pH Excellent (72)

42. TH; Ca?; Mg?'; EC; pH; Fe*'; Cl; SO42; F; NOs~ Excellent (72)

Table 2. Comparison of groundwater quality classification by deterministic and fuzzy logic approach

Fluoride was considered one of the most critical parameters, because its concentration exceeds 1.5 mg/l
recommended by SANS in drinking water which can lead to severe health impacts, including skeletal and dental
fluorosis [3]. Accordingly, an exclusive fuzzy rule was defined such that any sample with a fluoride
concentration above 1.5 mg/l would be classified as “unacceptable.” However, the degree of certainty for this
classification was further refined based on the consideration of other parameters. In the Mamdani max—min
inference system, the minimum membership value from each rule is first determined using the fuzzy “min”
operator, subsequently, the maximum value from this set of minimums is selected, representing the degree of
belongingness of the water sample to a specific quality category [3]. In this study, the mean of maxima
defuzzification method was employed. Based on this approach, the results of all 42 groundwater samples were
evaluated and are presented in Table 2. The fuzzy logic method proved particularly valuable for samples with
parameter values falling within the safety margin. In such cases, uncertainty plays a critical role in decision-
making, as the likelihood of decision errors increases when values are near threshold limits.

A comparison between the decisions derived from the fuzzy logic model and those obtained through
deterministic evaluation is presented in Table 2. The results indicate that the water quality of sample 15 is
classified as “excellent” with the highest certainty level of 80%, followed by 7 other samples with a certainty
level of 72%. For example, in the case of borehole sample 15 evaluated using the deterministic approach, all
parameters (TH, Ca?", Mg*, EC, pH, Fe**, Cl-, SO4>~, F-, NOs") were classified as excellent, for borehole sample
18, seven parameters (Ca?"; Mg?"; pH; Fe?*; SO427; F~; NOs™) were classified as excellent, two parameters (EC
and CI") were placed in the good category, while total hardness fell into the fair category. Such a fragmented
decision regarding drinking water quality often provides an ambiguous picture, even for scientists and engineers,
and becomes even more challenging when this information must be communicated to the general population.
The drawback in the implementation of the proposed classification values by Masindi and Foteinis [1] into fuzzy
logic model illustrated in Fig. 1. In all the categories, which include “excellent”, “good”, “fair”, and
“unacceptable”, there exists a strong overlap between “excellent” and “good” categories, whereas a little overlap
exists between the “fair” and “unacceptable” categories. In the same vein, the remaining 9 parameters (EC, TH,
Mg*, Ca*", Fe**, CI-, F~, SO4*, and NOs") in Table 1 shows no clear distinction between these two categories;
hence, the fuzzy logic model places the two categories exclusively within the “unacceptable” range.



4. Conclusion

In this paper, groundwater quality in rural areas of South Africa was comprehensively examined using the
deterministic and fuzzy logic approach, which helped in overcoming certain limitations associated with
conventional approach used for groundwater quality indexing. The Fuzzy logic classification with certainty level
to each linguistic term, makes the classification more informative and reliable. Decisions expressed as linguistic
categories accompanied by certainty levels are far more convincing and easier to communicate, particularly to
the general populace. Given the multiple sources of uncertainty involved at various stages of water quality
decision-making, the fuzzy logic method provides a more robust and realistic representation of water quality.
This study highlights the reliability and robustness of fuzzy logic models in handling risk assessment problems
involving uncertainties, imprecision, overlapping boundaries and the need for appropriate classification criteria
for fuzzy model implementation.
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