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Abstract. Cosmological models in which dark matter and dark energy interact in a non-gravitational
manner are known as Interacting Dark Energy (IDE) models and have been proposed to address
many long-standing shortcomings and tensions in standard cosmology. Furthermore, recent re-
sults from the DESI Collaboration have suggested hints of dynamical dark energy, for which IDE
models could provide a viable explanation. The relevance of IDE models underscores the need
to understand their parameter space and potential limitations. Unfortunately, obtaining analytical
solutions for the evolution of dark matter and dark energy densities is often not possible. To this
end, we apply dynamical system analysis techniques to a well-known IDE model Q = 3Hδρde,
establishing an alternative method to find constraints on the parameter space that avoid the com-
mon pitfalls of these models, such as negative energy densities and future singularities, without
the need for analytical solutions. We also show that our method can provide insight into the
requirement for radiation, matter and dark energy dominated eras, accelerated future expansion,
and how these models may address the coincidence problem. Using the techniques established
here, researchers may investigate other IDE models that have escaped analysis to date.

1 Introduction
In standard cosmology, the expansion of the universe is described by the ΛCDM model, where the universe is
dominated by two mysterious dark components, cold dark matter (CDM) and dark energy Λ, estimated to make
up approximately 95% of the energy of the universe. Dark matter (DM) is usually modelled as a particle beyond
the Standard Model introduced to explain galaxy rotation curves and many other astronomical and cosmological
observations. Dark energy (DE) is usually assumed to be a cosmological constant Λ, which was introduced to
account for the observed accelerated expansion of the universe. The ΛCDM model has been incredibly successful
in describing cosmological data, as illustrated by measurements of the power spectrum of the Cosmic Microwave
Background [1]. Although successful, the ΛCDM models face many challenges, which motivate research beyond
the standard cosmological model. We will briefly mention five of these shortcomings, two of theoretical origin,
and three that relate to recent increases in precision of cosmological data.

1. The cosmological constant problem: The predicted energy density of a cosmological constant is measured
to be approximately 120 orders of magnitude smaller than the predicted value [2].

2. The coincidence problem: The DM and DE densities coincidentally have the same order of magnitude
at the present moment when we measure it, while their energy densities are predicted to differ with many
orders of magnitude in both the past and predicted future [3].

3. The Hubble tension: The 4σ − 6σ discrepancy of the estimation of the present expansion rate H0 from
early time probes such as CMB, and late time probes such as Type Ia Supernova [4].



4. The S8 discrepancy: The 2σ − 5σ discrepancy between late-time and early-time measurements of the
parameter S8, which is related to how matter clumps on cosmological scales [4].

5. Hints of dynamical dark energy: Recent measurements of baryonic acoustic oscillations (BAO) from the
DESI collaboration provide a 2.8σ − 4.2σ preference for dynamical DE over the ΛCDM model [5].

In order to address the above-mentioned problems, a plethora of extensions to standard cosmology have been
suggested, but we will focus on a group of models called interacting dark energy (IDE). IDE models are char-
acterised by an hypothesised non-gravitational energy exchange between DM and DE. This has the consequence
that the energies of neither DM nor DE are separately conserved, but instead the energy of the total dark sector is
conserved, which leads to a modification of the standard conservation equation:

ρ̇dm + 3Hρdm = Q ; ρ̇de + 3H(1 + ω)ρde = −Q

ωeff
dm = − Q

3Hρdm
; ωeff

de = ωde +
Q

3Hρde
.

(1)

In (1), ρdm and ρde are the energy densities of DM and DE, respectively, ρ̇ denotes differentiation with respect to
cosmic time, H = ȧ

a is the Hubble parameter, a the scale factor and ω is the DE equation of state. Most important
is Q, the interaction function whose sign determines the direction of energy transfer, such that energy flows from
DE to DM if Q > 0 (iDEDM regime), while energy flows from DM to DE if Q < 0 (iDMDE regime). The effect
of the interaction can also be encapsulated using effective equations of state ωeff

dm/de, which provide equivalent
fluid descriptions without an interaction, but instead with dynamical equations of state. IDE models were initially
introduced to address the coincidence problem, as the interaction can allow DM and DE to dilute with expansion
at the same rate [3], such that the problem is solved for either the past or future if ωeff

dm = ωeff
de . In recent years,

it has been shown that IDE models can also help alleviate H0 and S8 tensions [4], increasing their popularity.
Lastly, IDE models provide a natural mechanism to account for the recent hints of dynamical dark energy, while
also allowing for phantom crossings [5]. Although IDE models have become popular, we would like to highlight
the shortcomings of IDE models, such as negative energy densities and future singularities, and to provide find
conditions to avoid them, if possible.

One of the problems is that the function Q is not agreed upon, and is usually decided phenomenologically.
This leads to a plethora of interaction kernels Q, very few of which (1) can be analytically solved. Without ana-
lytical solutions for the evolution of ρdm and ρde, the background dynamics of these models can be hard to predict,
especially with regards to the possible presence of both negative energy densities and big rip future singularities.
To this end, we apply techniques from dynamical systems analysis to find conditions that ensure radiation, matter
and DE dominated eras, positive energy densities, future accelerated expansion, avoid a future singularity and to
address the coincidence problem, all without the need for analytical solutions. We have chosen the most popular
interaction kernel Q = 3Hδρde to show that our method finds convergent results with those obtained from analyti-
cal solutions given in [6]. The methods established here can be used to obtain similar conditions for any interaction
kernel Q.

2 Background equations
To address the coincidence problem, we require that DM and DE redshift and dilute at the same rate in either the
distant past or future. The ratio of DM to DE is given by:

r =
ρdm
ρde

=
Ωdm

Ωde
=

ρdm,0a
−3(1+ωeff

dm)

ρde,0a−3(1+ωeff
de )

= r0a
−3(ωeff

dm−ωeff
de ) ; ζ = 3(ωeff

dm − ωeff
de ). (2)

The magnitude of the deviation from ζ = 0 indicates the degree of the coincidence problem, as ζ = 0 corresponds
to ωeff

dm = ωeff
de , where DM and DE redshifts at the same rate, fixing their ratio r = constant. In the ΛCDM

model we have ζ = 3, so if ζ < 3 the coincidence problem is alleviated, which happens in the iDEDM regime,
while ζ > 3 worsens the problem, which happens in the iDMDE regime [3, 6]. Besides DM and DE, the universe
also contains radiation (r) and baryonic matter (bm), whose density evolves with expansion of the universe as
ρr = ρ(r,0)a

−4 and ρbm = ρ(bm,0)a
−3, respectively. The entire model may also be approximated as a single fluid,

which has a total effective equation of state ωeff
tot given by:

ωeff
tot =

Ptot

ρtot
=

1

3
Ωr + ωΩde, (3)

where the last equality is obtained by assuming a flat universe, such that the density parameters Ωi =
8πG
3H2 ρi add

up to satisfy Ωr + Ωbm + Ωdm + Ωde = 1. What makes ωeff
tot useful is that it determines the fate of the universe,



such that ωeff
tot ≤ −1

3 corresponds to accelerated expansion, while ωeff
tot < −1 corresponds to a big rip future

singularity. A big rip singularity is characterised by both the DE density and the scale factor becoming infinite
(ρde → ∞ ; a → ∞) within a finite time interval. This behaviour can be considered non-physical by researchers,
and models that avoid this are preferred.

3 Dynamical systems analysis
Dynamical systems analysis is a well-established tool to study the stability of a system of equations. Solutions
to the system of equations are known as critical points, where many of the trajectories corresponding to functions
with different initial conditions may either diverge or converge. If the system is perturbed around a critical point,
the system may diverge away from the point, called an unstable node, source or past attractor. Conversely, if the
trajectories instead converge at the critical point, the point is classified as a stable node, sink or future attractor.
Lastly, if some trajectories converge, while others diverge, the critical point is known as a saddle point. Math-
ematically, these points are classified according to sign of the eigenvalues obtained from the Jacobian matrix of
the system of equations at that point. Specifically, if all eigenvalues are positive, the point is an unstable node; if
some eigenvalues are positive while others are negative, we have a saddle point; and if all eigenvalues are negative
we have a stable node. Additionally, zero eigenvalues correspond to a manifold of solutions. See [7] for applica-
tions of these techniques to cosmology. The behaviour of the system at the future attractor is especially useful in
determining the fate of the universe, no matter the initial conditions.

We will now consider the dynamical behaviour of an IDE model with the interaction kernel Q = 3δHρde.
The system of equations was derived in [6], but we have added the flatness assumption to reduce the number of
equations (Ωr = 1 − Ωbm − Ωdm − Ωde), as well as taken the derivative to the Hubble parameter Ω′

i =
d
dζΩi,

which leads to the dynamical system:

Ω′
de = Ωde [1− Ωbm − Ωdm − Ωde (1− 3ω)− 3ω]− 3δΩde

Ω′
dm = Ωdm [1− Ωbm − Ωdm − Ωde (1− 3ω)] + 3δΩde,

Ω′
bm = Ωbm [1− Ωbm − Ωdm − Ωde (1− 3ω)] ,

(4)

where we also used the relation that 8πG
3H2 ρi = Ωi. From the dynamical system in (4), we obtained three solutions

corresponding to three critical points, alongside the eigenvalues λ of the Jacobian matrix at those points, whose
stability we analyse one at a time. For this study, we have two assumptions regarding the parameter space: 1.
ω < 0 (DE has negative pressure) ; 2. δ < |ω| (the interaction strength is not too strong)

Critical Point Pr: radiation-dominated phase.

Ωbm = 0, Ωdm = 0, Ωde = 0, → Ωr = 1 ; λ =

[
1− 3(δ + ω)

1
1

]
. (5)

Since we have the assumed condition that (δ+ω) < 0, this implies that the first eigenvalue is positive 1−3(δ+ω) >
0. Since all eigenvalues are positive, this radiation-dominated phase is an unstable node (source).

Conditions for : Radiation-dominated unstable node (source)
{
(δ + ω) < 1

3
. (6)

Critical Point Pm: matter-dominated phase.

Ωbm = −Ωdm + 1, Ωdm = Ωdm, Ωde = 0, → Ωr = 0 ; λ =

[
0
−1

−3(δ + ω)

]
. (7)

The coordinates in (7) correspond to a combination of baryonic and DM domination, alternatively, a matter-
dominated phase, as shown by Ωm = Ωbm + Ωdm = −Ωdm + 1 + Ωdm = 1. This critical point is also not a
single point, but a line on the axis where the combination of the two densities equal to one, as seen in Figure 1
below. This behaviour is illustrated by the first eigenvalue being zero, indicating a line or manifold that consists
of a continuous set of equilibria where the sum of baryonic and DM is equal to one. Furthermore, the second
eigenvalue is negative, while the third eigenvalue is positive, which implies that this manifold also acts as a saddle
point.

Conditions for : Matter-dominated saddle manifold
{
δ < −ω . (8)



Critical Point Pdm+de: dark energy hybrid dominated phase.

Ωbm = 0, Ωdm = − δ

ω
, Ωde = 1 +

δ

ω
, → Ωr = 0 ; λ =

[
3(δ + ω)− 1
3(δ + ω)
3(δ + ω)

]
. (9)

From the coordinates in (9) we see that Ωdm +Ωde = 1 at this critical point, which corresponds to DM-DE hybrid
dominated phase. We may note that DE will dominate DM at this critical point if δ < −ω/2, as this will cause
Ωde > Ωdm. Immediately from the matter coordinate of the critical point, alongside the assumption that ω < 0,
we note that DM will be negative if:

Conditions for Ωdm > 0 : ω < 0 and δ > 0 (iDEDM regime) (10)

For the DE to remain positive Ωde = 1 + δ
ω > 0 we need δ < −ω, which justifies our initial assumption about

the magnitude of the interaction strength. From the assumption that (δ + ω) < 0, this implies 3(δ + ω) < 0 and
3(δ + ω)− 1 < 0, which means both eigenvalues are negative and the critical point is a stable node (sink).

Conditions for : Positive dark matter-dark energy hybrid dominated stable node
{
ω < 0

0 < δ < −ω
. (11)

The critical points and the behaviour of trajectories around these points can be seen by plotting phase portraits
of the dynamical system in (4). In Figure 1, we see that this model has a past radiation-dominated attractor Pr,
but does not show a single baryonic matter or DM-dominated saddle point. Instead, a manifold that consists of a
continuous set of equilibria points can be seen located on the line where Ωbm = Ωbm + Ωdm = 1. This manifold
acts as a continuous set of matter-dominated saddle points Pm. To more clearly see the effects of the interaction
term on the dark components, we also consider the 2D projection in the (Ωdm,Ωde) plane in the bottom panels of
Figure 1, where we set Ωbm = 0, as baryonic matter does not interact and will not influence if DM or DE crosses
into negative densities. We see that the interaction most noticeably changes the stable node which acts as a future
attractor from complete DE dominance in ΛCDM to a DM-DE hybrid dominance. Importantly, the sign of the
interaction constant δ, which determines the direction of energy flow, will determine whether this future attractor
point has negative energies. For a small interaction in the iDEDM regime (δ > 0), all energies will remain positive,
while in the iDMDE regime (δ < 0), DM will always become negative in the future (Ωdm < 0).

We now need to consider where the trajectories become negative by doing a boundary analysis. For the DE
density to remain positive we need the DE flow lines Ω′

de ≥ 0 at the boundary Ωde = 0, so that the flow cannot
cross into negative Ωde. When we substitute the condition Ωde = 0 into Ω′

de found in the dynamical system (4), we
obtain Ω′

de(Ωde = 0) = 0. Thus, we see that Ω′
de vanishes here and the flow is tangent to the line, which implies

that the trajectories cannot cross into negative Ωde, ensuring positive DE densities for any choice of parameters in
the physically viable area. This is a direct consequence of the fact that as ρde → 0, then Q = 3Hρde → 0 and the
energy flow stops before negative DE can be reached.

For DM to remain positive, we need the trajectories to remain within region bounded by three invariant sub-
manifolds, illustrated by the green triangle in bottom left panel of Figure 1, connecting the critical points Pr,
Pm and Pdm+de. No trajectories will cross the line connecting Pr and Pm, as it is an invariant sub-manifold,
while trajectories will also remain within the line connecting Pm and Pdm+de, which is guaranteed from the
flatness assumption Ω(dm,0) + Ω(de,0) ≤ 1. Finally the line connecting Pr (Ωdm,Ωde) = (0, 0) and Pdm+de

(Ωdm,Ωde) = (− δ
ω , 1 + δ

ω ) has the gradient m = ∆Ωde

∆Ωdm
=

1+ δ
ω−0

− δ
ω−0

= − δ+ω
δ . It should be noted that the slope

will be positive m > 0, from the assumption δ + ω < 0 and δ > 0 from previously derived constraint in (11). The
positive slope ensures the slope is in the positive DM domain (Ωdm > 0). We can find additional constraints on
the initial coordinates (Ω(dm,0),Ω(de,0)) to ensure positive energy, by requiring that these coordinates are below
the invariant line connecting Pr and Pdm+de:

Ω(de,0) ≤ −δ + ω

δ
Ω(dm,0) → δ ≤ − ω(

1 + 1
r0

) , (12)

where r0 =
Ω(dm,0)

Ω(de,0)
and δ > 0. Condition (12) can be combined with the constraint for positive critical points

in (11) to obtain (1), which ensures positive energies at all points in the cosmological evolution. This is the same
condition found in [6] using analytical solutions for ρdm and ρde. The asymptotic past and future behaviour of the
model can be understood by substituting the critical points into (2) and (3), yielding Table 1.

Conditions for Ωdm/de ≥ 0 throughout cosmological evolution: iDEDM with 0 ≤ δ ≤ − ω(
1 + 1

r0

) . (13)



Figure 1: Phase portraits showing the evolution density parameters for the IDE model with interaction kernel
Q = 3Hδρde. The top panels show 3D phase portraits with positive energy trajectories only found in the iDEDM
regime δ = +0.1 (left panels) and only negative energy trajectories in the iDMDE regime δ = −0.1 (right panels).
All trajectories share a radiation-dominated past attractor Pr, a matter-dominated saddle point Pm and a DM-
DE hybrid dominated future attractor Pdm+de, where DM becomes negative in the iDMDE regime, indicated by
trajectories leaving the red physically viable area. A 2D projection of the phase portraits in the (Ωdm,Ωde) plane
(bottom panels) is obtained by setting Ωbm = 0. The bounded region connecting the three critical points, indicated
by the green triangle, is used to derive the positive energy conditions found in (13).



Pr Pm Pdm+de

Class Unstable node (source) Saddle Point Stable node (sink)

Ωr 1 0 0

Ωbm 0 −Ωdm + 1 0

Ωdm 0 Ωdm − δ
ω

Ωde 0 0 1 + δ
ω

r ∞ ∞ − δ
δ+ω

ωeff
dm 0 0 ω + δ

ωeff
de ω + δ ω + δ ω + δ

ζ −3(ω + δ) −3(ω + δ) 0

ωeff
tot

1
3 0 ω + δ

Table 1: Behaviour of IDE model Q = 3Hδρde at critical points.

4 Conclusions
In this study, we performed a dynamical systems analysis of the IDE model Q = 3Hδρde, resulting in the positive
energy conditions (13), which implies that DM can only remain positive if there is a small interaction in the
iDEDM regime. This analysis also resulted in Table 1, where we see that our model is guaranteed to have past
eras dominated by radiation Pr and matter Pm, during which the severity of the coincidence problem is given by
ζ = −3(δ + ω). Since ω < 0 and in the iDEDM regime δ > 0, we have ζ < 3, thus alleviating the coincidence
problem in the past, while for the iDMDE regime where δ < 0, worsening the coincidence problem.

At the future attractor Pdm+de, there is a hybrid DM-DE dominant phase , during which the DE and DM redshifts
at the same rate ωeff

dm = ωeff
de = ω + δ, implying a fixed ratio of r = − δ

δ+ω and ζ = 0, solving the coincidence
problem in the future. At this final attractor point, the model will show late-time accelerated expansion as long as
ωeff
tot = ω+δ ≤ − 1

3 , which will hold as long as δ ≤ −ω− 1
3 . Lastly, DE can be in the phantom regime ω < −1, but

avoid a big rip singularity in the iDEDM regime (δ > 0), as long as the interaction strength is sufficiently positive
such that ωeff

tot = ω + δ ≥ −1. This is obtained when δ ≥ −(ω + 1). All results obtained in this study agree with
those in [6], establishing these dynamical systems analysis techniques as an alternative method to understand the
parameter space of IDE models, even without analytical expressions for the evolution of the density of DM and
DE. We recommend that other researchers apply similar analysis to IDE models, so that we may better understand
the implications of models that are candidates to address cosmological tensions.
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