
Reservoir Computing for Predicting Chaotic
Dynamical Systems

Taheer Jooma Abbajee1, Keegan Anderson1,4, Muaaz Bhamjee2,5,
Maria Vivien Visaya1,3,4

1Department of Mathematics and Applied Mathematics, University of Johannesburg,
Johannesburg, South Africa
2Clean Energy Research Group, Department of Mechanical and Aeronautical Engineering,
University of Pretoria, Pretoria, South Africa
3DSTI-NRF Centre of Excellence in Mathematical and Statistical Sciences, University of the
Witwatersrand, Johannesburg, South Africa
4National Institute for Theoretical and Computational Sciences, Stellenbosch University,
Stellenbosch, South Africa
5Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg,
South Africa

E-mail: taheerjooma@gmail.com

Abstract. Time-series prediction involves forecasting future values by analysing historical data
to detect patterns, trends, and variations; chaotic systems are particularly challenging to predict
due to their sensitivity on initial conditions. Two primary prediction approaches exist: data-
driven and model-based methods. Reservoir computing (RC) is a data-driven model based on
recurrent neural networks (RNNs), where the hidden layer is replaced by a “reservoir” repre-
sented by a given dynamical system. This model reduces certain complexity (compared to RNNs)
while maintaining performance, and excels in predicting time-series from unknown systems. We
demonstrate this using the logistic, sine and Hénon maps. The model provided successful short-
and medium-term prediction, but remains limited in long-term forecasting. It also inferred key
dynamical properties (e.g., fixed points, correlation maps, Lyapunov exponents) not explicitly
present in the training data. Our results confirm that RC as an effective alternative to RNNs and
highlights its potential for applications in complex systems modelling.

1 Introduction
Chaotic dynamical systems are deterministic but are often difficult to predict due to sensitive dependence on initial
conditions. It is often the case that one might only have access to the observed chaotic time series generated by an
unknown dynamical system [1]. Reservoir computing is a machine learning algorithm that emerged in the early
2000s as a simplified alternative to RNNs that can be trained on a sample of known time series data and can then
be used to predict and analyse the dynamics of the underlying system [1]. In this study we intend to show that
reservoir computing models can accurately predict the time-series data and capture the essential dynamics of the
logistic, sine, and Hénon map.



Figure 1: Schematic of a reservoir computer architecture.

2 Reservoir Computing Model
A RC model consists of three layers: an input layer, a reservoir, and an output layer (as shown in Figure 1).
Consider a RC consisting of dr nodes and dx input and output nodes. At each time-step t ∈ N0, let xt ∈ Rdx

be the input to the RC, rt ∈ Rdr the hidden reservoir state and x′
t ∈ Rdx the output of the RC. Note that dr is

often chosen such that dr > dx, this is to ensure a higher dimensional mapping of input time-series to the reservoir
space. The input layer consists of a matrix Wi ∈ Rdr×dx which maps the input vector xt to the reservoir space.
The elements of Wi are randomly chosen from a uniform distribution between [−σ, σ], where σ is chosen such
that the elements of Wixt lie between (−1, 1). The reservoir is the most important layer and is responsible for
computing the next reservoir state. The evolution of the reservoir states is given by

rt+1 = tanh(Wixt +Wrrt + b), (1)

where Wixt is the output of the input layer, Wr ∈ Rdr×dr is the reservoir weight matrix, and b ∈ Rdr is a constant
bias term of the form β1, where β ∈ (−1, 1) and 1 ∈ Rdr . The reservoir weight matrix can be thought of as an
adjacency matrix that represents the connections of the nodes in the reservoir. The matrix Wr is chosen randomly
to have a set sparsity (τ) and spectral radius (ρ). The output layer consists of a matrix Wo ∈ Rdx×dr which
projects the reservoir states back to the target dimension Rdx . The matrix Wo is found during training, and then
used to found the output x′

t+1 as given by
x′
t+1 = Wort. (2)

3 General Set-up of our RC model
In order to set-up our RC model we follow a procedure similar to the one described by Hara and Kokubu [2].
Assume we have observed time-series data {xt}t∈N0 , then choose T0, T1, T2 ∈ N such that T0 < T1 < T2 and we
can partition the time-series data into three subsets: {xt}T0

t=0, {xt}T1

t=T0+1, and {xt}T2

t=T1+1. Lastly, we choose r0,
Wi, Wr and b as described in Section 2.

During the warm-up phase (0 ≤ t ≤ T0) the reservoir states are updated according to equation (1). This phase
is used to eliminate transient behaviour caused by the choice of initial conditions x0 and r0. During the training
phase (T0 + 1 ≤ t ≤ T1) we continue to update the reservoir states according to equation (1) and collect all
the reservoir states and input vectors into the respective matrices R = [rT0+1 rT0+2 rT0+3 · · · rT1 ] and
X = [xT0+1 xT0+2 xT0+3 · · · xT1 ] . We can then find Wo by solving the minimisation problem
argminWo∈Rdx×dr ∥WoR−X∥2 which has the least squares solution Wo = XRT (RRT )−1.

A one-step prediction (T1 + 1 ≤ t ≤ T2) can now be completed using equations (1) and (2). The output time
series {x′

t}
T2

t=T1+1 is expected to be nearly identical to the target time series {xt}T2

t=T1+1. Since x′
t = Wort is

expected to be approximately equal to xt, we can substitute equation (2) for xt in equation (1) to obtain

rt+1 = tanh(WiWort +Wrrt + b). (3)

Equation (3) is known as the autonomous reservoir system. After training, the reservoir evolves on its own
and can be thought of as a dynamical system of the form rt : Rdr → Rdr . In order to find the optimal hyper-
parameters for our RC model, we employ a two-step procedure: first, we explore the hyper-parameter space and
find promising regions using random searches; thereafter, Bayesian optimisation is used to refine and extract the
optimal hyper-parameters. Table 1 contains all optimum hyper-parameters used in our study.

4 Generalised Synchronisation
Generalized synchronisation (GS) is a type of synchronisation that occurs when the state of one system is com-
pletely dependent on the state of another system. The independent system is often called the drive system while
the dependent system is referred to as the response system [3].



Hyper-parameters
Dynamical system ρ τ σ β

Logistic map 0.866350431222052 0.94 1.2667028204891229 8.680828069765185× 10−5

Sine map 0.8353366916477455 0.96 1.5641523755434774 7.422063288375644× 10−6

Hénon map 0.6074166603943667 0.95 0.35371283527605013 -0.5996761514948162

Table 1: Hyper-parameters used for all simulations.

Definition 4.1 (Drive and response systems) Suppose a drive system is given by a dynamical system (M,ϕ), then
a response system F : RN ×M → RN is given by rt+1 = F (rt, xt), where xt = ϕt(x0) ∈ M , x0 ∈ M , rt ∈ RN ,
and t ∈ N0.

A reservoir computer is essentially a drive-response system where the discrete dynamical system (M,ϕ) is the
drive system, and the evolution of the reservoir states is the response system [4].

Definition 4.2 (Generalised Synchronisation [3]) Let V ⊆ RN . A GS between a drive and a response system is
a map g : M → RN such that for any r0 ∈ V and for any x0 ∈ M , the following holds g(xt+1) = F (rt, xt) =
rt+1, for all t ∈ N0. If V ⊂ RN , then g is called a local GS, and if V = RN then g is called a global GS.

Closely related to GS is the Echo State Property (ESP).

Definition 4.3 (Echo State Property [5]) Let r0, r′0 ∈ Rdr be initial reservoir states. Let {xt}t∈N0 , xt ∈ Rdx ,
be a given input time-series. A reservoir map F : Rdr × Rdx → Rdr has the ESP if the sequences rt+1 =
F (rt, xt) and r′t+1 = F (r′t, xt) satisfy ∥rt+1 − r′t+1∥ → 0 as t → ∞.

Theorem 4.1 ([6]) Every reservoir map that has the ESP also has the property of GS.

The ESP ensures stability in our model as past inputs gradually lose their influence over time, just as the intensity
of an echo fades with time. In order to better understand the ESP we will look at contracting reservoir maps.

Definition 4.4 (Contraction of reservoir maps) A reservoir map F : Rdr × Rdx → Rdr is called globally state
contracting if there exists a constant c ∈ (0, 1) such that for any r, r′ ∈ Rdr and x ∈ Rdx it follows that
∥F (r, x)− F (r′, x)∥ ≤ c∥r − r′∥.

Theorem 4.2 ([7]) A reservoir map F : Rdr × Rdx → Rdr that is globally contracting has the global ESP.

In the RC model that was previously described, we find that our model is contracting and hence has the ESP if and
only if the largest singular value of the reservoir weight matrix is less then one [8]. Alternatively, as a sufficiency
condition we require the spectral radius of the reservoir weight matrix to be less then one [9].

5 Simulations and Predictions
To quantify the performance of our RC model we choose T0 = 50, T1 = 100, T2 = 150, and apply our model to
the following dynamical systems:

• The logistic map with parameter 3.91,
xt+1 = 3.91xt(1− xt) with x0 = 0.63;

• The sine map with parameter 0.955,
xt+1 = 0.955 sin(πxt) with x0 = 0.71;

• The reduced 1-D Hénon map with classical parameters a = 1.4 and b = 0.3,
xt+1 = 1− 1.4x2

t + 0.3xt−1 with x0, x1 = 0.

The code used to simulate and study the above dynamical systems is available on GitHub1.

5.1 One-step and reservoir prediction
Inspecting Figure 2 and Table 2, it can be observed that the one-step predictions are remarkably similar to the
actual time series, however analysing the reservoir prediction we see that our predictions have deteriorated slightly
but are still similar to the actual time series. This is due to fact that the reservoir prediction has no access to the
observed time-series and instead uses its own past predictions to calculate future predictions.

1https://github.com/TaheerJooma/SAIP_rcs



Figure 2: Actual vs predicted trajectories for the one-step and reservoir predictions.

one-step and reservoir prediction errors

Dynamical system MAE MSE RMSE
one-step reservoir one-step reservoir one-step reservoir

Logistic map 0.00158448 0.04413210 0.00000310 0.00676420 0.00176089 0.08224477
Sine map 0.00081580 0.01575847 0.00000082 0.00097293 0.00090569 0.03119181
Hénon map 0.00070524 0.00716956 0.00000085 0.00053447 0.00092096 0.02311868

Table 2: Error analysis for the one-step and reservoir predictions.

5.2 Valid prediction time
The valid prediction time (VPT) [10] provides an indication of how many future reservoir predictions our RC
model can perform within a given threshold ϵ > 0, and is defined as

V PT = min
t∈N

RMSE(n) = min
t∈N

√√√√ 1

n

n∑
t=1

(xt − x′
t)

2 > ϵ,

where n is the number of data points, ϵ = std({xt}T1

t=T0+1), xt is the actual value at time-step t, and x′
t is the pre-

dicted value at time-step t. In order to gain an idea of the number of reservoir predictions our model can perform
within a given threshold, we calculate the VPT for a hundred different initial conditions of our target system and
analyse the data in a boxplot illustrated in Figure 3.

Figure 3: Distribution of VPTs.

Mean of VPT over 100 samples
Dynamical system Mean VPT
Logistic map 23.06
Sine map 28.19
Hénon map 29.44

Table 3: Mean VPT for 100 samples.

Notice that the data in Figure 3 contains numerous outliers. This can be explained by considering the overall
stability of the initial condition used. If the initial condition lies in or around a stable region of the target dynamical
system then the VPT will be fairly large as the time series is more predictable. Conversely, if the initial condition
lies in or around an unstable region of the target dynamical system then the VPT will be smaller as the time series
is more unstable, hence less predictable. From Table 3, we see that our model on average can reliably predict
between 23-29 steps into the future, depending on which map is being forecasted.



Figure 4: Actual vs predicted correlation maps.

Comparison of fixed points

Dynamical system Actual
Predicted

MAE
Spurious Non spurious

Logistic map 0, 291
391 1.5297709 -0.00994626, 0.74397722 0.00994626, 0.00026830

Sine map 0, 0.72540262 ± 2.06426943, 0.7252752 -0.00000396, 0.72505301 0.00000396, 0.00034961
Hénon map −7±

√
609

28 None 0.63147419, -1.13309976 0.00011971, 0.00174529

Table 4: Comparison of actual and predicted fixed points.

5.3 Correlation map reconstruction
A correlation map between x′

t and x′
t+1 describes and visualises how x′

t is related to x′
t+1. In order to visualise

the predicted correlation map we plot x′
t vs x′

t+1 for 10 000 points. From Figure 4 it can be seen that the predicted
correlation maps are almost identical to the actual correlation maps in both shape and structure.

5.4 Prediction of fixed points
In order to find predicted fixed points we will first solve for r∗ in the equation r∗ = tanh((WiWo +Wr)r

∗ + b).
The predicted fixed points of the target system is then given by x′∗ = Wor

∗. It is important to note that since
x′∗ is a projection of r∗ to a lower dimensional space Rdx , both x′∗ and r∗ share the same stability. The stability
is determined by analysing the eigenvalues of the Jacobian matrix J(r) = diag

[
1 − tanh2((WiWo + Wr)r

∗ +

b)
]
(WiWo+Wr). Table 4 lists and compares the actual and computed fixed points, and reveals numerous spurious

fixed points. The spurious fixed points can easily be identified and eliminated as they are outliers when compared
to the training data. Examining the errors in Table 4 it can be observed that our RC model is capable of predicting
actual fixed points up to at least two decimal places. Lastly, all the actual and predicted fixed points were found to
be unstable.

5.5 Prediction of Lyapunov exponents
Lyapunov exponents characterize the rate of separation of infinitesimally close trajectories. A positive Lyapunov
exponent is associated with sensitivity to initial conditions and is often used as indicator of chaos. From the errors
in Table 5 we see that our model is capable of predicting all Lyapunov exponents up to at least two decimal places.

Comparison of Lyapunov exponents
Dynamical system Actual Predicted MAE
Logistic map 0.49123091 0.50002128 0.00879036
Sine map 0.45938807 0.46568606 0.00629799
Hénon map 0.42081703, -1.62478983 0.41453935, -1.61709175 0.00627768, 0.00769809

Table 5: Comparison of actual and predicted Lyapunov exponents.



6 Conclusions
This study looked at a RC approach for predicting and analysing chaotic dynamical systems based solely on
observed time-series. In conclusion our reservoir computer was capable of performing short- to medium-term time
series predictions. Our model was also capable of learning and preserving key dynamical properties that were not
explicitly contained in the training data. However, our model remains limited in long-term forecasting. Possible
future work includes exploring the embedding of the reservoir space and further testing on higher dimensional
systems.

Acknowledgements
MVV acknowledges funding from the DSI-NRF Centre of Excellence in Mathematical and Statistical Sciences
(CoE-MaSS). The authors acknowledge the scholarship funding for this research from the Faculty of Science,
University of Johannesburg, and the Centre for High Performance Computing (CHPC), South Africa, for providing
computational resources to this research project. Opinions expressed, and conclusions arrived at are those of
the authors and are not necessarily to be attributed to the CoE-MaSS, NITheCS, the CHPC, the University of
Johannesburg or the University of Pretoria.

References
[1] A. Aussem, “Dynamical recurrent neural networks towards prediction and modeling of dynamical systems,”

Neurocomputing, vol. 28, no. 1-3, pp. 207–232, 1999.

[2] M. Hara and H. Kokubu, “Learning Dynamics by Reservoir Computing (In Memory of Prof. Pavol
Brunovský),” Journal of Dynamics and Differential Equations, vol. 36, no. S1, pp. 515–540, Feb. 2024.

[3] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. Abarbanel, “Generalized synchronization of chaos
in directionally coupled chaotic systems,” Physical Review E, vol. 51, no. 2, p. 980, 1995.

[4] A. Nazerian, C. Nathe, J. D. Hart, and F. Sorrentino, “Synchronizing chaos using reservoir computing,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 33, no. 10, pp. 103–121, 2023.

[5] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state property,” Neural networks, vol. 35, pp.
1–9, 2012.

[6] L. Grigoryeva, A. Hart, and J.-P. Ortega, “Chaos on compact manifolds: Differentiable synchronizations
beyond the Takens theorem,” Physical Review E, vol. 103, no. 6, p. 062204, 2021.

[7] A. Hart, J. Hook, and J. Dawes, “Embedding and approximation theorems for echo state networks,” Neural
Networks, vol. 128, pp. 234–247, 2020.

[8] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural networks—with an erratum
note,” Bonn, Germany: German national research center for information technology gmd technical report,
vol. 148, no. 34, p. 13, 2001.

[9] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication,” science, vol. 304, no. 5667, pp. 78–80, 2004.

[10] J. A. Platt, S. G. Penny, T. A. Smith, T.-C. Chen, and H. D. Abarbanel, “A systematic exploration of reservoir
computing for forecasting complex spatiotemporal dynamics,” Neural Networks, vol. 153, pp. 530–552, 2022.


