
Testing f (Q) gravity as a solution for the H0 and S8

tensions

Dumiso Mithi1, Shambel Sahlu1,2,3 and Amare Abebe1,2

1Centre for Space Research, North-West University, Potchefstroom 2520, South Africa
2National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
3Department of Physics, Wolkite University, Wolkite, Ethiopia

E-mail: 28145410@mynwu.ac.za

Abstract. In this work, we investigate a modified gravity framework based on the f(Q) gravity
model, whereQ is the non-metricity scalar, specifically focussing on the parameterisation f(Q) =
α+βQn as solutions for the Hubble constant (H0) and the matter fluctuation amplitude parameter
(S8) tensions. Using recent observational data sets including baryon acoustic oscillations (BAO)
from Dark Energy Spectroscopic Instrument (DESI), cosmic chronometers (CC), and type Ia
supernovae from the Pantheon+ and SH0ES compilations, we constrain the free parameters of
the Lambda Cold Dark Matter (ΛCDM) model and our model via the Markov Chain Monte Carlo
(MCMC) method. Our analysis shows that the f(Q) model can accommodate observational
data with large error margins in the derived values of H0 and reveals possible degeneracies
when assuming the solution fQ ≡ ∂f

∂Q = 1 today. We compare our findings with previous
studies that relax certain assumptions of the model and find improved parameter constraints. We
outline plans for future work that will perform a comprehensive statistical assessment of the f(Q)
model’s ability to resolve the H0 and S8 tensions by combining early- and late-time cosmological
measurements without restrictive assumptions.

1 Introduction
In modern physics, the indispensable and foundational theory of space, time, and gravitation, where gravity is
understood as the curvature of spacetime is General Relativity (GR), formulated by Einstein in 1915 [1, 2]. GR has
proven remarkably successful, accurately predicting a wide range of phenomena, including planetary motion, light
deflection, gravitational time delay, and black hole dynamics. It has been rigorously tested across a wide range of
scales, from submillimeter laboratory experiments to solar system distances (∼ 1014 m), including strongly gravi-
tating binary pulsar systems. A major milestone came with the first direct detection of gravitational waves by the
Laser Interferometer Gravitational-Wave Observatory, coinciding with the 100th anniversary of GR [2]. However,
several large-scale observations such as the accelerated expansion of the universe from type Ia supernovae (SNe
Ia) observations [3], and galactic rotation curve velocity measurements [4, 5] pose significant challenges for GR.

To address these discrepancies within the standard cosmological framework, the Lambda Cold Dark Matter
(ΛCDM) model was introduced, which incorporates a cosmological constant (Λ) and cold dark matter as essential
components [6, 7, 8]. Although the ΛCDM model resolves some of the shortcomings of GR such as the observed
accelerated expansion of the universe, it also introduces its own challenges. One such issue is the fine-tuning
problem, where the theoretical value of the dark energy density derived from quantum field theory is ≳ 10121 times
the observed value. Another is the coincidence problem, where the dark energy and dark matter densities are of the
same order of magnitude today, despite evolving differently over time. Furthermore, observational tensions exists
between early- and late-time measurements of key cosmological parameters, namely the measured values of the



Hubble constant (H0) and the matter fluctuation amplitude parameter (S8).

Early-universe measurements suggest H0 = 67.4 ± 0.5 km/s/Mpc and S8 = 0.831 ± 0.013, while late-time
observations yield H0 = 73.04 ± 1.04 km/s/Mpc and S8 = 0.766+0.020

−0.014. These discrepancies correspond to
tensions of approximately 5σ for H0 and 3.1σ for S8, respectively [9]. Various approaches have been proposed to
overcome the shortcomings of the standard ΛCDM model, including dynamical dark energy, interactions between
dark matter and dark energy, and radiation-based models. A compelling alternative is to modify gravity itself.
Rather than introducing new matter fields or exotic energy components such as inflation or dark energy, modified
gravity theories aim to explain both early- and late-time cosmic acceleration and structure formation through changes
to the underlying laws of gravity. In recent decades, numerous such models have been developed to account for
observations of galaxy and cluster dynamics, large-scale structure (LSS), Cosmic Microwave Background (CMB)
anisotropies, and the present accelerated expansion, without invoking dark matter or dark energy [9, 10].

The idea of modifying gravity dates back to Einstein’s later work, in which he attempted to unify GR and
electromagnetism using affine connections, a concept introduced by mathematicians like Weyl. Although unifica-
tion was not achieved, Einstein’s approach gave rise to a formulation where gravity is mediated by torsion rather
than curvature, which forms the foundation of metric teleparallel gravity. Later advancements showed that gravity
could also emerge from non-metricity in flat, torsionless geometries. This led to the concept of the geometric trinity
of gravity, which recognises three physically equivalent but geometrically distinct formulations of GR: curvature-
based, torsion-based, and non-metricity-based, all rooted in metric-affine geometry. This trinity has attracted
growing interest for its ability to provide new insights into the foundations of GR and address long-standing issues
such as gravitational energy-momentum and black hole entropy [10]. In this study, we focus on a modified gravity
model based on nonmetricity named f(Q)-gravity to explore its potential to resolve tensions H0 and S8.

2 f(Q) Cosmology
In f(Q)-gravity, the mathematical description between the geometry of spacetime and the distribution of matter
can be obtained from the modified Einstein-Hilbert action [10]:

SQ =
1

2κ

∫ √
−g [f(Q) + Lm] d4x, (1)

where κ = 8πG
c4 with G being the Newtonian constant, g is the determinant of the metric gµν , Lm is the matter

lagrangian density, and f(Q) is an arbitrary function of non-mentricity scalar Q defined as Q = −QαµνP
αµν .

Furthermore, Qαµν ≡ ∇γgµν and Pα
µν ≡ 1

4
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−Qα
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α
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metric tensor with two independent traces (Qα = Q
µ

α µ and Q̃ = Qµ
αµ) and the superpotential term, respectively

[10, 11]. Furthermore, the Action (1) in a flat spacetime is equivalent to GR for f(Q) = Q. Now, setting
8πG = c4 = 1 to vary the action (1) with respect to the metric tensor and setting it to zero yields the following
field equations:
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α
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αβ
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where Tµν = − 2√
−g

δ
√
−gLm

δgµν is the energy-momentum tensor,f is f(Q), and fQ ≡ ∂f
∂Q . For cosmological ap-

plication, we consider the line element ds2 = −dt2 + a(t)2δijdx
idxj which corresponds to the spatially flat

Friedman-Lemaitre-Robertson-Walker (FLRW) metric, in which δij is the Kronecker delta and a(t) is the cosmic
scale factor used to define the Hubble expansion rate H ≡ ȧ

a with a dot representing the derivative with respect to
cosmic time. As a result, one assumes that the Universe is composed of a perfect fluid [12]:

Tµν = (ρ+ P )uµuν + Pqµν , (3)

such that the energy density and pressure, respectively, become

ρ = 6H2fQ − 1

2
f, (4)

P =
1

2
f − 2fQ(Ḣ + 3H2 + 12H2Ḣ

fQQ

fQ
), (5)



where fQQ ≡ ∂2f
∂Q2 and the non-metric tensor becomes Q = 6H2 then the modified Friedmann and Raychaudhuri

equations are

3H2 =
1

2fQ
(ρ+

f

2
), (6)

Ḣ + 3H2 = − 1

2fQ
(24H2ḢfQQ + P − f

2
). (7)

In this work, to solve the modified Friedmann and Raychaudhuri equation, we use the f (Q)-gravity model
reconstructed using observation data without any prior ansatz on the underlying cosmological background by
means of the Markov Chain Monte Carlo (MCMC) integration technique applied to the combined likelihood of the
SNIa Pantheon sample and observational Hubble data from S. Capozziello and R. D’Agostino [13] as

f(Q) = α+ βQn, (8)

where α, β, n are constant parameters that match the observational data after numerical reconstruction based on
rational Pade approximations. The model matches GR when α = 0 and β = n = 1, while it matches the ΛCDM
model when α = −2Λ and β = n = 1. As a result, the partial derivative of the model with respect to Q is

fQ = βnQn−1, (9)

and using the fact that when the model in use was constructed, it was concluded that Geff coincided with G at the
present epoch translated to fQ = 1 we get the following relation:

β =
6H2

0

n(6H2
0 )

n
. (10)

Assuming a non-relativistic matter and substituting Equations (7, 8, 9) into the modified Friedmann Equation (6),
the normalised Hubble parameter (h(z) = H(z)

H0
) after some mathematical manipulations becomes

h(z) =

√√√√(Ωm,0(1 + z)3 + Ωα

2

2− 1
n

) 1
n

, (11)

where Ωm,0 is the dimensionless matter density parameter of the present value, and Ωα = α
3H2

0
is a dimensionless

parameter introduced in this study to ensure that h(z) remains dimensionless. From Equation (11) we may deduce
that n ̸= 0 and n > 1

2 . As a result, in the next subsection we will use recent cosmological data to constrain Equation
(11) and the flat ΛCDM model given as

h(z) =
√
Ωm.0(1 + z)3 + (1− Ωm,0). (12)

2.1 Cosmological observation
The data sets used are Baryon Acoustic Oscillations (BAO) measurements from the Dark Energy Spectroscopic
Instrument (DESI) [14], cosmic chronometers (CC) from Hubble measurements [15], and SNIa distance moduli
measurements from Pantheon+ &SH0ES (PantheonP+ SH0ES) [16] and using the Python package updated MCMC
simulations named Kosmulator from R.T. Hough et al. [17] we can constrain the following paramaters Ωm,0, Ωα,
n, H0, rd, and Mabs following the work of S.Sahlu et al. [18] on how to put constraints on your model using
these aforementioned datasets. Where rd and Mabs are the sound horizon at the drag epoch with units Mpc and
the calibrated absolute magnitude of an SNIa, respectively. Both rd and H0 have physical units; however, for the
sake of brevity and neatness, we will present their values without explicitly including units from this point on.
It should be understood that these quantities are not dimensionless. The free parameter to be constrained with
their prior range are [(0 ≤ Ωm ≤ 1), (0 ≤ Ωα ≤ 2), (0.5 < n ≤ 2), (0 ≤ H0 ≤ 100), (100 ≤ rd ≤ 200) and
(−22 ≤ Mabs ≤ −15)], while the free parameters with their known true value are Ωm = 0.315, H0 = 67.4
rd = 147.05 all three from Planck 2018 results [19] and Mabs = −19.25 from A.Mhamdi et al. [20]



Figure 1: (left) Figure shows the contour plots and Gaussian graphs of the parameter distributions for the best-fit
parameters of the ΛCDM mode, whereas (right) Figure presents the same for the f(Q) model, using different
combinations of CC, BAO, and SNIa (Pantheon+ SH0ES) datasets to refine the best-fitting values of the free
parameters. Here, on this graphs Ωm represent the value of Ωm,0, and the corresponding parameter values are all
listed in Table 1.

Model Observation Ωm,0 Ωα n H0 rd Mabs

ΛCDM
CC+BAO+PantheonP+ SH0ES 0.303+0.011

−0.011 — — 72.389+0.852
−0.844 139.924+1.915

−1.869 −19.288+0.025
−0.025

PantheonP+ SH0ES 0.332+0.018
−0.018 — — 73.579+1.036

−1.008 — −19.244+0.030
−0.029

BAO+CC 0.296+0.015
−0.014 — — 69.128+1.717

−1.700 147.254+3.599
−3.320 —

f(Q)

CC+BAO+PantheonP+ SH0ES 0.342+0.111
−0.113 1.419+0.404

−0.471 1.037+0.038
−0.037 71.383+15.326

−8.071 139.715+1.922
−1.908 −19.289+0.025

−0.025

PantheonP+ SH0ES 0.543+0.267
−0.213 1.263+0.489

−0.486 1.284+0.215
−0.217 73.283+12.813

−8.148 — −19.244+0.030
−0.029

BAO+CC 0.309+0.139
−0.108 1.412+0.406

−0.483 1.017+0.063
−0.063 68.109+15.572

−8.064 147.281+3.505
−3.345 —

Table 1: Best-fit parameter values for the ΛCDM and f(Q) models using different combinations of datasets. The
discussion and analysis of these results are explained in the Discussion and Conclusion section.

3 Discussion and Conclusion
According to the latest measurements from DESI BAO by A.G. Adame et al. [14] and the 2000 SNIa sample
compilation from the Union Through UNITY project by D. Rubin et al. [21], the best-fit values for the matter
density parameter are Ωm,0 = 0.295+0.015

−0.015 and Ωm,0 = 0.356+0.028
−0.028, respectively. A recent late-time constraint

from the combined Pantheon+SH0ES datasets by D. Brout et al. [16] yields Ωm,0 = 0.334+0.018
−0.018, while the com-

bination of BAO and cosmic chronometers (CC) of S. Sahlu et al. [18] gives Ωm,0 = 0.296+0.015
−0.014 within the flat

ΛCDM model. A direct combination of Pantheon+SH0ES and early-time probes such as BAO must be approached
with caution due to degeneracies, particularly in the absolute magnitude calibration of SNIa. As noted in the
literature, such combinations are often avoided unless a model explicitly accounts for the overlapping information.
These degeneracies can be mitigated by incorporating complementary measurements sensitive to both early- and
late-time expansion histories, such as Planck’s CMB data. This approach has been demonstrated in joint analyses
by A.G. Adame et al. [14] and D. Brout et al. [16], which combined BAO, CMB and Pantheon + data to obtain
model-consistent cosmological parameters.

In this work, we break the degeneracy between BAO and Pantheon+SH0ES by including CC data. This is
evidenced by the nearly circular 2D contour plots, reduced uncertainties, and approximately Gaussian posterior
distributions for the ΛCDM model, as shown in the left panel of Figure 1. From the DESI BAO and Union
Through UNITY datasets, the values of Ωm with their associated uncertainties under the flat Λ CDM model are
summarised in Table 1. All combined data sets yield values within an acceptable range 0.28 ≲ Ωm ≲ 0.384. This



consistency also holds for the two combinations (CC+BAO+PantheonP+SH0ES and BAO+CC) under the f(Q)
model. However, the value of Ωm obtained from the Pantheon+SH0ES dataset under the f(Q) model lies outside
this range, indicating a possible inconsistency.

Early-universe measurements suggest H0 = 67.4 ± 0.5, while late-time observations yield H0 = 73.04 ± 1.04
within the ΛCDM framework. This well-known tension is also evident in Table 1. Under the f(Q) = α + βQn

model, the H0 tension remains unresolved. In particular, while all data sets show large uncertainties in H0 and
slanted 2D contours with non-Gaussian distributions (see the right panel of Figure 1), the uncertainty in Ωm is
significantly large only in the Pantheon+SH0ES dataset (as seen in Table 1), potentially pointing to degeneracy in
the current f(Q) model. Consequently, when assuming fQ = 1, the model exhibits degeneracies, and thus a full
statistical or perturbative analysis is omitted in this work.

Interestingly, this same model has been studied without assuming fQ = 1 by S. A. Narawade and B. Mishra
[22] and by D. Mhamdi et al. [23]. Narawade and Mishra, using Hubble parameter and PantheonP+SH0ES
data, reported best-fit values of H0 = 69.5+2.3

−1.9 and H0 = 70.7+2.7
−2.7, respectively. Mhamdi et al., combining

PantheonP+SH0ES, CC, and redshift-space distortion measurements, obtained H0 = 71.65+0.84
−0.84. In both cases,

the model was well constrained, with no signs of parameter degeneracy.

In conclusion, to rigorously evaluate the f(Q) model as a candidate to resolve the H0 and S8 tensions and to
perform a robust statistical assessment of its fit to cosmological data, a more comprehensive investigation is
required. Since previous studies have not examined the compatibility of their constraints with both early- and late-
time cosmological observations, this gap will be addressed in future work using a full range of datasets, without
assuming f(Q) = 1. Furthermore, it is important to note that another valuable area of research is needed to verify
the non-degeneracy that exists between BAO and Pantheon+ SH0ES data when combined with complementary
measurements sensitive to early and late expansion histories.
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