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Abstract. In this work, we investigate a modified gravity framework based on the f(Q) gravity
model, where @ is the non-metricity scalar, specifically focussing on the parameterisation f(Q) =
a4+ BQR™ as solutions for the Hubble constant (Hy) and the matter fluctuation amplitude parameter
(Ss) tensions. Using recent observational data sets including baryon acoustic oscillations (BAO)
from Dark Energy Spectroscopic Instrument (DESI), cosmic chronometers (CC), and type Ia
supernovae from the Pantheon+ and SHOES compilations, we constrain the free parameters of
the Lambda Cold Dark Matter (ACDM) model and our model via the Markov Chain Monte Carlo
(MCMC) method. Our analysis shows that the f(()) model can accommodate observational
data with large error margins in the derived values of Hy and reveals possible degeneracies

when assuming the solution fgo = % = 1 today. We compare our findings with previous

studies that relax certain assumptions of the model and find improved parameter constraints. We
outline plans for future work that will perform a comprehensive statistical assessment of the f(Q)
model’s ability to resolve the Hy and Ss tensions by combining early- and late-time cosmological
measurements without restrictive assumptions.

1 Introduction

In modern physics, the indispensable and foundational theory of space, time, and gravitation, where gravity is
understood as the curvature of spacetime is General Relativity (GR), formulated by Einstein in 1915 [1, 2]. GR has
proven remarkably successful, accurately predicting a wide range of phenomena, including planetary motion, light
deflection, gravitational time delay, and black hole dynamics. It has been rigorously tested across a wide range of
scales, from submillimeter laboratory experiments to solar system distances (~ 10'* m), including strongly gravi-
tating binary pulsar systems. A major milestone came with the first direct detection of gravitational waves by the
Laser Interferometer Gravitational-Wave Observatory, coinciding with the 100th anniversary of GR [2]. However,
several large-scale observations such as the accelerated expansion of the universe from type Ia supernovae (SNe
Ia) observations [3], and galactic rotation curve velocity measurements [4, 5] pose significant challenges for GR.

To address these discrepancies within the standard cosmological framework, the Lambda Cold Dark Matter
(ACDM) model was introduced, which incorporates a cosmological constant (A) and cold dark matter as essential
components [6, 7, 8]. Although the ACDM model resolves some of the shortcomings of GR such as the observed
accelerated expansion of the universe, it also introduces its own challenges. One such issue is the fine-tuning
problem, where the theoretical value of the dark energy density derived from quantum field theory is > 10'?! times
the observed value. Another is the coincidence problem, where the dark energy and dark matter densities are of the
same order of magnitude today, despite evolving differently over time. Furthermore, observational tensions exists
between early- and late-time measurements of key cosmological parameters, namely the measured values of the



Hubble constant (Hj) and the matter fluctuation amplitude parameter (Sg).

Early-universe measurements suggest Hy = 67.4 £ 0.5 km/s/Mpc and Sg = 0.831 &+ 0.013, while late-time
observations yield Hy = 73.04 £ 1.04 km/s/Mpc and Sg = 0.766'_"8:8?2. These discrepancies correspond to
tensions of approximately 5o for Hy and 3.10 for Ss, respectively [9]. Various approaches have been proposed to
overcome the shortcomings of the standard ACDM model, including dynamical dark energy, interactions between
dark matter and dark energy, and radiation-based models. A compelling alternative is to modify gravity itself.
Rather than introducing new matter fields or exotic energy components such as inflation or dark energy, modified
gravity theories aim to explain both early- and late-time cosmic acceleration and structure formation through changes
to the underlying laws of gravity. In recent decades, numerous such models have been developed to account for
observations of galaxy and cluster dynamics, large-scale structure (LSS), Cosmic Microwave Background (CMB)
anisotropies, and the present accelerated expansion, without invoking dark matter or dark energy [9, 10].

The idea of modifying gravity dates back to Einstein’s later work, in which he attempted to unify GR and
electromagnetism using affine connections, a concept introduced by mathematicians like Weyl. Although unifica-
tion was not achieved, Einstein’s approach gave rise to a formulation where gravity is mediated by torsion rather
than curvature, which forms the foundation of metric teleparallel gravity. Later advancements showed that gravity
could also emerge from non-metricity in flat, torsionless geometries. This led to the concept of the geometric trinity
of gravity, which recognises three physically equivalent but geometrically distinct formulations of GR: curvature-
based, torsion-based, and non-metricity-based, all rooted in metric-affine geometry. This trinity has attracted
growing interest for its ability to provide new insights into the foundations of GR and address long-standing issues
such as gravitational energy-momentum and black hole entropy [10]. In this study, we focus on a modified gravity
model based on nonmetricity named f(Q)-gravity to explore its potential to resolve tensions Hy and Ss.

2 £(Q) Cosmology
In f(Q)-gravity, the mathematical description between the geometry of spacetime and the distribution of matter
can be obtained from the modified Einstein-Hilbert action [10]:
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where K = 824G with G being the Newtonian constant, g is the determinant of the metric g,,,,, £y, is the matter
lagrangian density, and f(Q) is an arbitrary function of non-mentricity scalar ) defined as Q@ = —Qq., P*".

Furthermore, Qqyr = Vg and P, = § (—Q"‘W + QQ(HO‘V) — Q% — Q%G — 5(“;@,,)) are the non-

metric tensor with two independent traces (Q, = Qo ', and Q = Q¥ ,.) and the superpotential term, respectively
[10, 11]. Furthermore, the Action (1) in a flat spacetime is equivalent to GR for f(Q) = Q. Now, setting
871G = ¢* = 1 to vary the action (1) with respect to the metric tensor and setting it to zero yields the following
field equations:
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where T, = f% 6@5 ™ is the energy-momentum tensor,f is f(Q)_, and fg = %. For cosmological ap-
plication, we consider the line element ds?> = —dt* + a(t)?8;;dz'dz’? which corresponds to the spatially flat

Friedman-Lemaitre-Robertson-Walker (FLRW) metric, in which d;; is the Kronecker delta and a(t) is the cosmic
scale factor used to define the Hubble expansion rate H = ¢ with a dot representing the derivative with respect to
cosmic time. As a result, one assumes that the Universe is composed of a perfect fluid [12]:

THV = (P + P)uuuz/ + Pq;un (3)

such that the energy density and pressure, respectively, become
9 1
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P= 1f72fQ(H+3H2+12H2HfQ—Q), (5)
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where foq = é%’; and the non-metric tensor becomes () = 6H? then the modified Friedmann and Raychaudhuri
equations are
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In this work, to solve the modified Friedmann and Raychaudhuri equation, we use the f (Q)-gravity model
reconstructed using observation data without any prior ansatz on the underlying cosmological background by
means of the Markov Chain Monte Carlo (MCMC) integration technique applied to the combined likelihood of the
SNIa Pantheon sample and observational Hubble data from S. Capozziello and R. D’Agostino [13] as

f(Q) = a+BQ", ®)

where «, 3, n are constant parameters that match the observational data after numerical reconstruction based on
rational Pade approximations. The model matches GR when o« = 0 and 8 = n = 1, while it matches the ACDM
model when & = —2A and 5 = n = 1. As a result, the partial derivative of the model with respect to Q is

fo =pBnQ" ", 9)

and using the fact that when the model in use was constructed, it was concluded that G ¢ coincided with G at the
present epoch translated to fo = 1 we get the following relation:

6H?
f=—T9 . (10)
n(6HZ)™
Assuming a non-relativistic matter and substituting Equations (7, 8, 9) into the modified Friedmann Equation (6),
the normalised Hubble parameter (h(z) = %{Z))) after some mathematical manipulations becomes
Q 1
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where €, o is the dimensionless matter density parameter of the present value, and (2, = 37> is a dimensionless
0

parameter introduced in this study to ensure that /(z) remains dimensionless. From Equation (11) we may deduce
thatn # Oandn > % As aresult, in the next subsection we will use recent cosmological data to constrain Equation
(11) and the flat AC'DM model given as

h(z) = \/Qm.o(l +2)3 4 (1 — Qo) (12)

2.1 Cosmological observation

The data sets used are Baryon Acoustic Oscillations (BAO) measurements from the Dark Energy Spectroscopic
Instrument (DESI) [14], cosmic chronometers (CC) from Hubble measurements [15], and SNIa distance moduli
measurements from Pantheon+ &SHOES (PantheonP+ SHOES) [16] and using the Python package updated MCMC
simulations named Kosmulator from R.T. Hough et al. [17] we can constrain the following paramaters 1., o, (4,
n, Hy, rq, and M5 following the work of S.Sahlu et al. [18] on how to put constraints on your model using
these aforementioned datasets. Where ry and M,;s are the sound horizon at the drag epoch with units M pc and
the calibrated absolute magnitude of an SNIa, respectively. Both r4 and Hj have physical units; however, for the
sake of brevity and neatness, we will present their values without explicitly including units from this point on.
It should be understood that these quantities are not dimensionless. The free parameter to be constrained with
their prior range are [(0 < Q,, < 1),(0 < Q, < 2),(0.5 < n < 2),(0 < Hy < 100), (100 < r4 < 200) and
(=22 < Myps < —15)], while the free parameters with their known true value are 2, = 0.315, Hy = 67.4
rq = 147.05 all three from Planck 2018 results [19] and M, = —19.25 from A.Mhamdi et al. [20]
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Figure 1: (left) Figure shows the contour plots and Gaussian graphs of the parameter distributions for the best-fit
parameters of the ACDM mode, whereas (righr) Figure presents the same for the f(Q) model, using different
combinations of CC, BAO, and SNIa (Pantheon+ SHOES) datasets to refine the best-fitting values of the free
parameters. Here, on this graphs (2,,, represent the value of 2, o, and the corresponding parameter values are all

listed in Table 1.

Model | Observation Qmo Qo n Hy rd M s
.0 0.852 915 .025
CC+BAO+PantheonP+ SHOES | 0.303*0:911 — — 72.38970:872 | 139.92471-91% | —19.288+0:025
ACDM | PantheonP+ SHOES 0.3321301% — — 73.579 1058 — —19.244+9:930
BAO+CC 02960015 — — 69.128 1717 | 147 2543599 —
CC+BAO+PantheonP+ SHOES | 0.3421011% | 1.41910-991 | 1.03710-05% | 71.38318%33° | 139.7157 1522 | —19.28970-022
f(Q) | PantheonP+ SHOES 0.54370-267 1 1.26370-459 | 1.28470215 | 73.28371%513 — —19.24475-950
BAO+CC 0.30970-139 | 1.41273-49% | 1.01770:95% | 68.1097 55572 | 147.28173-303 —
Table 1: Best-fit parameter values for the ACDM and f(() models using different combinations of datasets. The

discussion and analysis of these results are explained in the Discussion and Conclusion section.

3 Discussion and Conclusion
According to the latest measurements from DESI BAO by A.G. Adame et al. [14] and the 2000 SNIa sample
compilation from the Union Through UNITY project by D. Rubin et al. [21], the best-fit values for the matter

density parameter are Q,, o = 0.29570 012 and Q,,, o = 0.35670 035, respectively. A recent late-time constraint

from the combined Pantheon+SHOES datasets by D. Brout et al. [16] yields Q,, o = 0.3341001%, while the com-

bination of BAO and cosmic chronometers (CC) of S. Sahlu et al. [18] gives €2, 0 = 0.296f8:85’1 within the flat
ACDM model. A direct combination of Pantheon+SHOES and early-time probes such as BAO must be approached
with caution due to degeneracies, particularly in the absolute magnitude calibration of SNIa. As noted in the
literature, such combinations are often avoided unless a model explicitly accounts for the overlapping information.
These degeneracies can be mitigated by incorporating complementary measurements sensitive to both early- and
late-time expansion histories, such as Planck’s CMB data. This approach has been demonstrated in joint analyses
by A.G. Adame et al. [14] and D. Brout et al. [16], which combined BAO, CMB and Pantheon + data to obtain
model-consistent cosmological parameters.

In this work, we break the degeneracy between BAO and Pantheon+SHOES by including CC data. This is
evidenced by the nearly circular 2D contour plots, reduced uncertainties, and approximately Gaussian posterior
distributions for the ACDM model, as shown in the left panel of Figure 1. From the DESI BAO and Union
Through UNITY datasets, the values of €2,,, with their associated uncertainties under the flat A CDM model are
summarised in Table 1. All combined data sets yield values within an acceptable range 0.28 < Q,,, < 0.384. This



consistency also holds for the two combinations (CC+BAO+PantheonP+SHOES and BAO+CC) under the f(Q)
model. However, the value of (,,, obtained from the Pantheon+SHOES dataset under the f((Q) model lies outside
this range, indicating a possible inconsistency.

Early-universe measurements suggest Hy = 67.4 + 0.5, while late-time observations yield Hy = 73.04 £ 1.04
within the ACDM framework. This well-known tension is also evident in Table 1. Under the f(Q) = a + SQ™
model, the Hj tension remains unresolved. In particular, while all data sets show large uncertainties in Hy and
slanted 2D contours with non-Gaussian distributions (see the right panel of Figure 1), the uncertainty in €, is
significantly large only in the Pantheon+SHOES dataset (as seen in Table 1), potentially pointing to degeneracy in
the current f(Q)) model. Consequently, when assuming fg = 1, the model exhibits degeneracies, and thus a full
statistical or perturbative analysis is omitted in this work.

Interestingly, this same model has been studied without assuming fo = 1 by S. A. Narawade and B. Mishra
[22] and by D. Mhamdi et al. [23]. Narawade and Mishra, using Hubble parameter and PantheonP+SHOES
data, reported best-fit values of Hy = 69.54_“%3 and Hy = 70.74_“2:; respectively. Mhamdi et al., combining

PantheonP+SHOES, CC, and redshift-space distortion measurements, obtained Hy = 71.65f8:§3. In both cases,
the model was well constrained, with no signs of parameter degeneracy.

In conclusion, to rigorously evaluate the f(Q) model as a candidate to resolve the Hy and Sy tensions and to
perform a robust statistical assessment of its fit to cosmological data, a more comprehensive investigation is
required. Since previous studies have not examined the compatibility of their constraints with both early- and late-
time cosmological observations, this gap will be addressed in future work using a full range of datasets, without
assuming f(Q) = 1. Furthermore, it is important to note that another valuable area of research is needed to verify
the non-degeneracy that exists between BAO and Pantheon+ SHOES data when combined with complementary
measurements sensitive to early and late expansion histories.
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