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Abstract. In this work, the Sm,O; sample was synthesized through the sol-gel technique. It
has then been focused on how the calcination temperature affects the structural and
photocatalytic properties of the material. Therefore, the synthesized powder sample has been
calcined at two different temperatures, which are 500 and 700 °C. The structural and optical
properties, along with photocatalytic properties, have been studied. The structural analysis
through x-ray diffraction (XRD) confirmed that the compounds crystallize in a cubic structure
with a lattice parameter, a, is 10.94 A. The crystallite size calculated from the XRD data is 16
nm for the 500 °C calcined sample and 23 nm for the 700 °C calcined sample. Fourier
transform infrared (FTIR) spectra have demonstrated the presence of Sm-O stretching
vibrations in both of the synthesized samples. The photocatalytic performance of both
samples was examined by degrading the Methylene Blue (MB) dye with irradiation of UV
light and found that the sample calcined at 700 °C is more efficient compared to the 500 °C
calcined sample.

1 Introduction

In recent times, metal oxides are used in several areas and particularly a number of research events have been
commenced to explore rare-earth metal oxides. Metal oxides are prevalent because of their irreplaceable
properties. A sequence of rare-earth-metal-based compounds is widely used in numerous fields of existing
science and technology due to the outcome of its infrequent optical, chemical, magnetic, electrical and catalytic
properties arising from its distinctive 4f electrons [1, 2]. The rare earth metal oxides are extensively useful in
the arenas of biochemical probes, optical transmission, luminescence devices, medical diagnostics, etc [3].
These rare-earth metal oxide compounds are the most stable rare-earth compounds with the rare-earth ions left
behind in the trivalent state [3]. It is known that R,O; nanocompounds display better catalytic and
luminescence properties [3]. Lanthanides' rare earth metal compounds are extensively used in numerous fields
of current science and technology [2]. It has been widely used in nano sensors, photoelectronics, and micro-
circuit batteries, which has aroused considerable interest over the past several years [1]. The usage of a metal
oxide as a photocatalyst is very common for the humiliation of organic contaminants [2, 4-13]. The fabric
manufacturing enterprises produce so much wastewater, which comprises with abundance of organic pollutants
[14]. The contaminants create problems in the ecosystem due to their unchanging chemical nature, posing
numerous mutagenic and carcinogenic risks [2]. Because of this existing risk, wastewater treatment is one of
the all times attracted technical field. The heterogeneous photocatalysis process, which comprises with
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advanced oxidation process (AOP), delivers the consequence for the degradation of organic pollutants in
wastewater [2, 4-13]. This degradation process of the AOP encompasses the creation of superoxide (-O,)
radicals and hydroxyl (-OH) radicals [5]. These two radical species are unsteady and therefore attack organic
contaminants and create non-harmful products which are biocompatible [2, 4-13]

Rare earth metals are used in a wide range of applications, such as ultraviolet (UV) detectors, high-resolution x-
ray imaging, catalysts and fluorescent materials, owing to their high chemical stability and UV absorption
capability [2]. Lanthanide rare earth metal compounds are nowadays being used in photocatalysis, owing to
their exceptional f-electronic arrangement [2]. The Nanoparticles are very small units that exist in the range of
1-100 nm, in which substantial quantities of atoms are situated in the interfacial region in a disorderly fashion,
resulting in unusual physical and chemical properties [3, 12, 13, 15]. Therefore, rare earth metal oxide
nanoparticles are the most attractive materials for photocatalysis [2, 4-11]. Recently, a few reports have studied
the photocatalytic properties of rare-earth metal oxide nanoparticles [2, 4-11]. Sm,O; is a species of
encouraging rare earth oxide functional materials in recent times because of its wide energy gap, high electrical
resistivity, high dielectric constant and better chemical and thermal stability [16-19]. However, in this report,
Sm,03; nanoparticles have been synthesized. Further, the effect of calcination temperature on the structural and
photocatalytic properties of the Sm,03 sample has been studied.

2 Experimental details

Sm,03; sample was synthesized through the sol-gel method [12, 13]. For the synthesis of Sm,0O; at first
Sm(NOs); and ethanol were mixed to make the solution. With the help of a magnetic stirrer, the prepared
solution of the precursors was stirred for 3 h. Then the solution was kept for 24 h for aging. After aging, the
liquid was heated to dry to get the solid sample. After drying, the solid sample was crushed into powder. The
powdered sample was then calcined at 500 and 700 °C for three hours in a box furnace. The prepared sample
was used for characterization, using X-ray diffraction (XRD) technique with Cu-Ka radiation (1 = 1.5406 A),
and Fourier transform infrared (FTIR) spectra. Then, the photocatalysis measurements of the samples were
carried out by degrading the dye methylene blue (MB) with irradiation of UV light. Further, in this report, the
samples calcined at 500 and 700 °C are referred to as Sm,03-500 and Sm,05-700, respectively.

3 Results and discussion

The powder x-ray diffraction (PXRD) patterns of Sm,0; calcined at two different temperatures are presented in
Figure 1. The PXRD pattern of Sm,03-500 shows sharp peaks at 28.29 (222), 32.70 (044), 42.22 (431), 47.04
(440) and 55.74 (622), which demonstrates the pure cubic phase of the sample (JCPDS 15-0813) shown in
Figure 1(a) [15]. Figure 1(b) displays the PXRD peaks for Sm,03-700 and the most intense peaks are at 28.55
(222), 33.02 (044), 42.35 (431), 47.10 (440) and 56.04 (622), which signify the cubic crystal structure of the
material (JCPDS 15-0813) [3]. The XRD patterns of the samples are fit accorded with the cubic crystal
structure reported in Sm,0Os literature [15, 17]. From the Le-Bail refinement of XRD data, both samples exhibit
a lattice parameter is 10.9 A. Unlike Sm,05-500, peaks of XRD data for Sm,05-700 are sharper and more
intense, indicating higher crystallinity of Sm,053-700 sample [15]. XRD results show an increase in crystallinity
with increasing calcination temperature, as well as peaks become sharper. The sharpness of the peaks is due to
the larger size of the crystallites. Therefore, the crystallite size of the samples has been calculated using Debye-
Scherrer’s equation given below,

KA
BcosO

Crystallite size (D) =

where D is known as the crystallite size, K is the Scherrer constant, A is the X-ray wavelength, {8 is the full
width at half maximum, and 8 is the Bragg angle [15, 18, 19]. The obtained crystallite size for Sm,03-500 is 16
nm, whereas for Sm,03-700 it is 23 nm.
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Figure 1: XRD pattern of the sample (a) Sm,03-500 and (b) Sm,03-700.
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FTIR spectra of both the Sm,O5; samples are presented in Figure 2. The FTIR absorption spectrum for Sm,0O5-
500 and Sm,03-700 is nearly the same shown in Figure 2 (a) and Figure 2 (b), respectively. Both of the
samples show the characteristic absorption bands of pure Sm,Oj3 crystals located at around 456, 548 and 740
cm™, which correspond to Sm-O stretching vibrations [15, 16]. The results are well corroborated by the

reported FTIR data [15, 16].
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Figure 2: FTIR spectra of the sample (a) Sm,03-500 and (b) Sm,0;-700.



Figure 3(a) and (b) exhibit the photocatalytic measurements of the synthesized samples, Sm,05-500 and
Sm,05-700, respectively. Two containers having 50 ml of the aqueous solution of Methylene blue (MB), with
20 mg of two different samples of Sm,0; that is, Sm,03-500 and Sm,05-700, have been carried out for
photocatalytic analysis, respectively. Initially, without irradiation of UV radiation, UV-Visible measurements
were performed, and an absorbance peak at 310.65 nm was obtained, which is the characteristic peak of MB.
Then, for up to 20 minutes, the irradiation was carried out. Gradually MB peak intensity decreases with
increasing irradiation time, which indicates that with irradiation, the dye gets degraded. By using the following
equation degradation efficiency has been calculated.

(Co-Ct)
co

Degradation Efficiency (in percentage) = x 100

where Cy is the initial concentration of the dye and C: is the concentration of dye at the time, t [2, 4].

Finally, it has been found that after 20 min irradiation of UV light, Sm,05-500 degrades only 19% of the dye
shown in Figure 4(a). However, Figure 4 (b) demonstrates Sm,03-700, degrades 33% of the MB dye in 20 min.
Recently, Jeon et al. [2] have shown the photocatalytic studies with pure Gd,O3 nanoparticles. Rahul et al. [4]
and Luo et al. [5] studied the photocatalytic properties of La,Os. Similarly, some reports show the
photocatalytic properties of the rare earth metal oxide composite materials [6-11]. All these reports are
performed the photocatalytic studies to degrade the organic pollutants. Therefore, in this report, the effect of
calcination temperature on the photocatalytic characteristics of Sm,0O3; nanoparticles has been studied. It is
found that compared to a 500 °C calcined sample, a 700 °C calcined sample is more efficient for photocatalysis.
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Figure 3: UV-Visible spectra of the MB dye with irradiation time (a) sample Sm,03-500 and (b) sample
Sm,03-700.
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Figure 4. Dye degradation percentage (%) with irradiation time for the sample (a) Sm,05-500 and (b) Sm,0;-
700.

4 Conclusions

In this report, Sm,O5; nanoparticles were synthesized by the sol-gel technique. The synthesized sample was
calcined at two different temperatures, which is 500 and 700 °C. Thereafter, the cubic crystal structure of the
samples was confirmed by XRD. From the XRD data crystallite size of the samples was calculated. The
obtained value of crystallite size for the Sm,03-500 sample was 16 nm, whereas it was 23 nm for the sample
Sm,05-700. Both the samples exhibited Sm-O stretching vibrations confirmed from FTIR spectra.
Photocatalytic analysis showed that Sm,03-700 was more efficient under UV irradiation to degrade the dye
MB.
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