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Abstract. Lanthanide-doped diamond couples the ultra wide band gap, high thermal conduc-
tivity and radiation hardness of the host with the rich electron physics of the dopant, promising
solid-state qubits, single-photon emitters and spin-memory elements. Supercell density func-
tional theory treatments of the charged Ce-vacancy complexes that underlie these functionalities
suffer from spurious image–image interactions and an ill defined electrostatic zero energy; post
processing finite-size corrections are therefore mandatory for quantitative defect thermodynam-
ics.
We benchmark the two principal correction schemes – the reciprocal space potential alignment
monopole method of Freysoldt, Neugebauer, van de Walle (FNV) and the real space multipole
expansion of Kumagai Oba (KO) – for CeV2, CeV3 and CeV4 in a 216-atom diamond supercell.
Uncorrected neutral formation energies agree with literature to within 0.5eV for all three and
confirm CeV3 as the most stable neutral complex. Introducing positive charge exposes limitations
of FNV: once the anisotropic Ce 4f charge density departs from the isotropic monopole assumed
in that formalism, FNV corrections fail to converge. In contrast, KO, which accounts for higher
multipoles, remains numerically stable and delivers consistent corrections.
Our results show that KO is indispensable for heavy-atom defects with non-spherical charge dis-
tributions, while FNV is reliable only for nearly isotropic cases. This enables accurate assessment
of rare-earth dopants in diamond and other wide-gap semiconductors.

1 Introduction
Doped diamond complexes are promising for spintronic [1, 2, 3, 4] and quantum optics applications [5, 6, 7, 8].
Diamond is an attractive host for these defects because it is a radiation-hard, ultra wide band gap semiconductor
capable of hosting deep defect states. For example, nitrogen-doped diamond already exhibited promise towards
spintronic applications in theoretical density-funtional theory (DFT) calculations in Ref. [1], and the negative
nitrogen vacancy cluster has been shown to exhibit spin conherence times at room temperature up to the order of
milliseconds and spin-relaxation times beyond that, which is very promising for quantum memory applications
[2]. Subsequent works have continued to explore such advantageous aspects of this defect center (see Ref. [4] and
references therein).

Lanthanide-doped diamond has also recently been explored for its potential, particularly in quantum optics
applications. Several studies have explored Cerium [9, 10], Erbium [11, 12], Europium [5, 13, 14], Praseodymium
[15, 16] and Ytterbium [11, 17] as dopants in diamond complexes of various forms.



Density-functional theory (DFT) has served as the workhorse for modelling a broad range of diamond com-
plexes [1, 3, 15, 13, 9, 14, 18, 16, 19, 20]. However, the periodic-boundary-condition (PBC) supercell model used
in DFT creates spurious electrostatic interactions between a charged defect and its periodic images, so explicit
correction terms are required [21, 22, 23, 24, 25]. Conventional potential-alignment schemes give only a partial
correction [22]; more sophisticated approaches (e.g. image-charge correction schemes) are needed for reliable
formation energies [23, 24, 25]. In this work we assess two of these correction schemes, the scalar Freysoldt,
Neugebauer, van de Walle (FNV) and the tensor Kumagai Oba (KO), and apply them to the CeV2, CeV3 and CeV4

complexes of diamond studied in Ref. [9].

2 Methods
The FNV and KO finite-size corrections outlined below follow their implementation in the SPINNEY post-
processing code, with conventions as defined by Ref. [26]. The formation energy of a charged defect supercell
in DFT is conventionally defined as [26]:
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where Ef
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]
is the ground-state DFT total energy of the defect supercell in charge state q and EP is the

neutral pristine diamond supercell. ni is the number of removed ( < 0) or added ( > 0) atoms and µi is the
chemical potential of atom type i. EVBM is the valence-band maximum (VBM) of the pristine supercell. ∆εF is
the Fermi level relative to the VBM. Finally, Ecorr

[
Dq

]
consists of two terms: the image-charge correction and

potential alignment.
Under PBC, a charged defect interacts with its own periodic images and the neutralising background (−q

Ω , with
Ω the supercell volume). Image-charge corrections remove this artificial long-range interaction, so that Ef

[
Dq

]
converges toward the dilute-defect limit in the ideal case [25]. A potential alignment correction is also needed since
the DFT Poisson solver sets the cell-average potential Vavg,Ω to zero arbitrarily [25]. The charged cells inherit this
potential shift, which, in turn, alters Kohn-Sham eigenvalues and total energies.

The FNV method defines the correction terms as [26]:

Ecorr
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Dq

]
= −Emodel − q∆Vmodel, q/b

∣∣
far

(2)

where Emodel is the electrostatic (Madelung) energy of a model charge density, which can be a point charge
(PC) or a charge density fitted to a suitable (radially isotropic) function. ∆Vmodel, q/b

∣∣
far

is the value of ∆Vmodel, q/b,
the difference between the defect-induced potential Vq/b and the and the charge-density model potential Vmodel,q

far away from the defect inside Ω. For convenience, the overall correction term in Eq. (1) has traditionally been an-
alyzed in Ewald summation form divided into real and reciprocal space parts [21, 25]. The electrostatic component
of this correction can thus be defined as [25, 26]:
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where ρ̃model,d(G) =
∫
Ω
ρmodel,d(r) e

−iG·r d3r, κ = |G|, and ε is the dielectric constant of the relaxed defect
supercell calculated within the linear response regime in our DFT calculations. The first term of Eq. (3) is just
the Fourier transform of the electrostatic energy of ρmodel,d and the second term corrects for the self-energy of an
isolated charge density [25]. The model charge density is defined as [23, 26]:

ρmodel,d(r) = qx
e−|r−r0|/γ

Nγ
+ q(1− x)

e−|r−r0|2/β2

Nβ
, (4)

where Nγ = 8π γ3, Nβ = π3/2 β3, and x, β and γ are fitting parameters with r0 is centered on the defect
[23, 24, 25]. Equation (4) represents a weighted sum of an exponentially decaying radial charge distribution and a
localised Gaussian charge distribution. If the weighting factor x = 1, then the model charge density is completely
delocalised, with the opposite case occurring when x = 0: the charge density is fully localised.

Importantly, the potential alignment ∆Vmodel, q/b

∣∣
far

in the FNV correction varies strongly around the defect
as the extent of relaxation of atoms around it increases [24, 25]. A planar average of this potential is used in the
FNV correction [23, 26]. Hence, relaxation of atoms at the defect gives rise to an anisotropic charge distribution
which the scalar FNV correction may not be able to accurately capture [24, 25].

To remedy this inherit deficiency, the tensor KO extension of the scalar FNV correction was introduced [25]:

Ecorr
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= −EPC − q∆VPC,q/b (5)
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ρ̃model,d(G) =

∫
Ω

ρmodel,d(r) e
−iG·r d3r =

∫
Ω

q δ(r− r0) e
−iG·r d3r = q, (7)

where now ε is the dielectric tensor also obtained from a DFT linear response calculation on the relaxed
defect supercell. In practice, ε is diagonalized and both ε and G are rotated into the principal-axis frame (where
ε is diagonal), so that GTεG =

∑
i εi G

2
i [25]. Note that here the constant (and divergent) electrostatic self-

interaction term cancels exactly in Eq. (5) because it appears with the same magnitude but opposite sign in the
electrostatic energy EPC and the reference potential VPC used to define the alignment term ∆V far

PC,q/b in the KO
scheme [25]. Hence, no explicit self-energy contribution is needed when Eq. (5) is used in Eq. (1).

Figure 1 shows the Ce-vacancy complexes considered in this work: Ce inserted into a divacancy, a trivacancy
or at the site of 4 C atoms removed. They have been created from a relaxed 216-atom diamond supercell with
lattice constant 3.574Å, in close analogy with the structures employed in Ref. [9]. 1

We performed DFT calculations in CASTEP [27] on the input structures, which were randomly distorted
from ideal symmetry to ensure energetically most favorable final structures after optimization, using on-the-fly-
generated (OTFG) ultra-soft pseudopotentials [28]. An energy cutoff of 540 eV and a 3 × 3 × 3 reciprocal-space
sampling k-mesh were employed. To account for localisation of the 4f orbitals on Ce, we used PBE+U [29, 30]
with the default value of U = 6.0 eV for Ce in CASTEP. The same range of initial charge states as in Ref. [9] were
used: q = −1, 0,+1,+2,+3,+4. In addition, to be able to account for all possible defect spin states, different
initial spin states for each charge state were considered: 0, 1, 2, ..., 6, 7. The structures were relaxed to tolerance
0.01 eV/Å. 2

Figure 1: The initial (left) CeV2, (middle) CeV3 and (right) CeV4 complexes used in this work. Faded yellow stars
indicate the nearest-neighbour atoms of Ce that have been removed by analogy with Ref. [9].

Figure 2: The optimized (left) CeV2, (middle) CeV3 and (right) CeV4 complexes. The dopant and nearest-
neighbour (nn) carbon atoms within the second nn shell of pristine diamond are shown. The bond distances
are also shown. In CeV2, all six nearest neighbours are ≈ 2.2Å from the Ce atom. In CeV3, two nearest neigh-
bours are ≈ 2.2Å, and the other four ≈ 2.3Å, from the Ce atom. In CeV4, one nearest neighbour is ≈ 2.2Å, and
the other three ≈ 2.3Å, from the Ce atom. All other carbon atoms are further than the second nn shell of pristine
diamond (2.53Å) from the Ce atom.

1We use a different naming convention for our Ce-vacancy complexes because the Ce atoms do not remain at substitutional sites after
relaxation, as implied by the naming convention of Ref. [9]: CeV, CeV2 and CeV3.

2The CASTEP utility c2x was employed to convert output binary files to Gaussian cube format read by SPINNEY.



3 Results
The relaxed vacancy complexes are shown in Fig. 2. The dopant and nearest neighbour carbon atoms within
the second-nearest neighbour shell of pristine diamond (2.53Å) are highlighted. The extent of coordination and
the increasing disparity between neighbouring bond lengths indicate the growing disorder about the relaxed point
defects.

It should not come as a surprise that the FNV corrections become increasingly unreliable as the disorder about
the dopant increases [25]. This can be seen by comparing the obtained overall FNV and KO corrections (in eV) in
tables 1–3. We also calculated the enclosed charge within each supercell based on the fitting parameters x, β and γ
obtained from Eq. (4) during the FNV correction calculation. Then, to enable a comparison with the conventional
potential alignment term in the second-to-last column, the FNV and KO potential alignment terms are also listed.
To obtain the conventional values, we compared the electrostatic potential of the defect supercells at an interstitial
centroid far away from the defect with that of the relaxed pristine supercell at the same location.

q Smin FNV total FNV ∆Vfar KO total KO ∆Vfar Conventional ∆V qenc
(eV)

−1 0.98754 0.226 0.118 0.217 0.126 0.163 −0.99999996
0 0.0000022 0.0 −0.003 0.0 0.001 0.0 0.0

+1 1.0007 0.205 −0.119 0.210 −0.114 −0.157 0.99999994
+2 2.00004 0.774 −0.222 0.771 −0.222 −0.303 1.9999998
+3 2.08479 1.893 −0.346 1.796 −0.345 −0.3134 2.9999994
+4 2.17017 27.245 −0.098 0.865 −0.087 −0.3365 3.9998

Table 1: FNV and KO total correction and potential alignment values (eV) for vacancy complex CeV2. Smin cor-
responds to the spin state of lowest total energy. The conventional potential alignment is included for comparison.
The enclosed charge within each supercell is calculated as qenc(r) = 4π

∫ r

0
ρmodel,d(r

′) r′2 dr′ with ρmodel,d as
defined in Eq. (4) and the integration performed on interval 0 < r ≤ 1

2Lmin with Lmin = mini ∥ai∥ and ai the
supercell side lengths.

q Smin FNV total FNV ∆Vfar KO total KO ∆Vfar Conventional ∆V qenc
(eV)

−1 1.0 0.317 0.113 0.202 0.116 0.121 −0.9999995
0 0.0019 0.0 −0.003 0.0 0.003 0.0 0.0

+1 0.99811 297.953 297.953 0.201 −0.102 −0.134 7.3× 10−6

+2 0.00062 1498.712 749.356 0.725 −0.197 −0.227 9.2× 10−6

+3 0.787866 2967.798 989.266 1.415 −0.268 −0.288 1.4× 10−5

+4 0.188895 3526.123 881.531 1.712 −0.234 −0.345 1.8× 10−5

Table 2: FNV and KO total correction and potential alignment values (eV) for vacancy complex CeV3. The
meanings of the remaining columns carry over from table 1.

q Smin FNV total FNV ∆Vfar KO total KO ∆Vfar Conventional ∆V qenc
(eV)

−1 1.0 292.236 −292.236 0.147 0.079 0.119 −4.6× 10−6

0 0.0 0.0 −0.001 0.0 0.001 0.0 0.0
+1 0.990084 285.872 285.872 0.186 −0.104 −0.122 7.3× 10−6

+2 0.00087 1113.150 556.575 0.727 −0.202 −0.237 1.4× 10−5

+3 0.961946 2218.033 739.344 1.450 −0.268 −0.322 2.2× 10−5

+4 0.337866 2843.334 710.833 1.886 −0.252 −0.392 2.9× 10−5

Table 3: FNV and KO total correction and potential alignment values (eV) for vacancy complex CeV4. The
meanings of the remaining columns carry over from table 1.



With the exception of charge state q = +4, CeV2 in table 1 exhibits consistent values of the total FNV and
KO corrections. The potential alignments of the two schemes also agree and both agree reasonably well with the
conventional scheme. For the q = +3 charge state, possible metastable spin states have been found; only the most
stable spin states are reported: Smin corresponds to the spin state of lowest total energy. The other spin-state total
energies of q = +3 differ from the minimum by at most 6.0×10−5 eV. Hence, given this small value, we conclude
that there are no metastable spin states for this vacancy complex. Finally, the FNV model charge calculated from
Eq. (4) for each defect supercell agrees with the charge state specified in the CASTEP calculation. The discrepancy
between the FNV and KO corrections for charge state q = +4 suggests that it is highly anisotropic. This is an
example of the inherit deficiency in the FNV method that the KO correction was meant to overcome[25].

We immediately observe how the situation changes when we consider the next vacancy complex with increased
disorder: CeV3. FNV only yields reasonable total correction and potential alignment values for the q = −1 charge
state. The FNV model charge enclosed in the supercell also tallies with this charge. The FNV correction and
potential alignment values blow up for all positive charge states, and the fact that the essentially zero fitted charge
densities do not agree with them suggests that the charge is delocalised, and that these defects are shallow, unlike
the localised deep states in CeV2. For q = 0, all non-zero initial spin states turn out to be metastable, with total
energies that differ by up to ≈ 0.01 eV from Smin. These energetically less favourable spin states have S ≈ 2.0
compared to Smin ≈ 0.002.

For the largest and most disordered vacancy cluster, CeV4, the FNV correction fails across the board, and
all non-zero charge states yield shallow defects with the FNV model charge delocalised beyond the confines of a
single defect supercell. The total energy difference between metastable spin states (for a given charge state) is up to
≈ 0.05 eV for q = +2. The less energetically favourable spin states all end up as S ≈ 2.0 whilst Smin ≈ 1×10−5.
In constrast to q = +4 of CeV2, the FNV correction ultimately fails here not because the defect is anisotropic but
rather because it is shallow, as is evident from the delocalised model charge in the last columns of tables 2 and 3.

The KO correction, on the other hand, delivers consistent values across all charge states. This is to be expected
given that it employs a point-charge electrostatic and atomic-site potential alignment model which by design cannot
discern the spatial extent of the charge distribution. Where KO agrees with the FNV correction, we know that we
are dealing with deep defect states

Finally, it is worth mentioning that the stability of the neutral vacancy complexes in our work follows the
same trend as the relaxed defects in Refs. [9, 16]: Ef

[
D0

]
CeV2

= 15.5259 eV, Ef

[
D0

]
CeV3

= 14.3588 eV and
Ef

[
D0

]
CeV4

= 14.5393 eV. In other words, the neutral CeV3 complex is the most stable.
In conclusion, the FNV and KO correction schemes have been evaluated for a set of three Ce-vacancy com-

plexes across various charge states, and spin states for each charge. The FNV correction fails gracefully in the
presence of a shallow defect whilst the KO correction continues to provide reasonable values. FNV results in
unrealistically large correction values for shallow levels, allowing defects with shallow levels to be identified.
Ultimately, the cure for a failing FNV correction is to employ hybrid exchange-correlation functionals as is our
intention in future work.
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