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Abstract. Open quantum Brownian motion (OQBM) was introduced as a scaling limit of
discrete-time open quantum walks, providing a new class of quantum Brownian motion. In
this case, the dynamics of the Brownian particle are governed by dissipative interactions with
a thermal bath and depend on the quantum internal state of the Brownian particle. In this
proceeding, we outline the derivation of a completely positive master equation for OQBM using
the adiabatic elimination of fast variables method for a weakly driven open Brownian particle
confined within a harmonic potential and dissipatively coupled to a thermal bath. We illustrate
the derivation using examples of initial Gaussian and non-Gaussian distributions. For both
examples, the OQBM dynamics converge to Gaussian distributions for various system-bath
parameters. From the resulting dynamics, we also derive equations for the first, second, and
third cumulants of the position distribution of the OQBM walker. Interestingly, we find that
the third cumulant is non-zero, which reveals that the intrinsic generator of the evolution is
non-Gaussian.

1. Introduction
Recently, Attal et al. [1] introduced the formalism of discrete-time open quantum walks (OQWs)
as a new type of quantum walks (QWs) to incorporate the dissipative dynamics of open
quantum systems [2]. OQWs rely entirely on the non-unitary evolutions induced by the
interaction between the walker and its environment, and rest upon the implementation of
appropriate completely positive trace-preserving (CPTP) maps [2, 3]. Unlike the traditional
unitary QWs [4, 5], where quantum interference over the nodes of a graph determines the
probability of finding the walker, in OQWs, the probability of finding the quantum walker on a
particular node depends on both the structure of the underlying graph and the walker’s quantum
internal state. Ref. [6] demonstrated that OQWs can perform dissipative quantum computation
and generate complex quantum states. Interested readers can find recent developments on this
subject in [7].

Shortly after the introduction of OQWs, Bauer et al. [8] introduced open quantum Brownian
motion (OQBM) as a scaling limit of discrete-time OQWs, providing a new class of quantum
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Brownian motion. In this case, the dynamics of the quantum Brownian particle depends not only
on the dissipative interactions with a thermal bath but also on the state of the internal degree of
freedom of the quantum Brownian particle. Recently, a microscopic derivation of OQBM for a
free Brownian particle subject to decoherent interaction with a thermal bath was proposed [9, 10].
In our recent work [11], we extended this framework by deriving OQBM in a generic dissipative
scenario using the adiabatic elimination of fast variables technique [12, 13, 14]. However, this
approach led to a master equation that is not completely positive, consistent with the limitations
of the standard Caldeira-Leggett model [15]. To resolve the issue of positivity, we now apply
the rotating wave approximation (RWA) [16] to the system-bath interaction Hamiltonian. This
leads to a completely positive master equation for OQBM in the case of a weakly driven open
Brownian particle confined within a harmonic potential and dissipatively coupled to a thermal
bath.

This proceeding has the following structure: In Sec. 2, we introduce the microscopic
Hamiltonian for this model and derive a completely positive Born-Markov master equation
for the reduced dynamics. In Sec. 3, we write the resulting master equation in coordinate
representation, and briefly outline the adiabatic elimination of fast variables method and derive
a completely positive master equation for OQBM. Sec. 4 presents the numerical illustrations of
the OQBM dynamics for various system-bath parameters and the equations for the cumulants
of the OQBM walker. The detailed derivation and the terms and parameters omitted here will
be provided in [17]. Lastly, in Sec. 5, we conclude.

2. Completely positive Born-Markov master equation
The total Hamiltonian of the system and bath can be written as

Ĥ “ ĤS ` ĤB ` ĤSB, (1)

where ĤS , ĤB, and ĤSB denote the Hamiltonians of the system, the bath, and the system-bath
interaction, respectively, which reads

ĤS “
p̂2

2m
`

mω2x̂2

2 `
ℏω0
2 σ̂z ` ℏΩσ̂x, (2)

ĤB “
ÿ

n

ℏωnâ:
nân, (3)

ĤSB “ ℏ
`

x̂ ` ασ̂x

˘

ÿ

n

gn

`

ân ` â:
n

˘

. (4)

Here, x̂ and p̂ denote the position and the momentum operators of the Brownian particle, m

is the mass of the Brownian particle, and mω2x̂2

2 represents the harmonic potential trapping
the particle with frequency ω. The Hamiltonian for the two-level system (2LS) representing
internal degree of freedom, is denoted by ℏω0

2 σ̂z, with ω0 being the transition frequency, and
ℏΩσ̂x describes a weak classical driving of the inner degree of freedom (Ω ! ω0) [18, 19]. The
operators σ̂i“x,y,z are the standard Pauli matrices and the bath is described by the annihilation
and creation operators, ân and â:

n, respectively, satisfying the standard bosonic commutation
relations rân, â:

ms “ δn,m, and ωn are frequencies of the corresponding oscillators. The system-
bath coupling strength is denoted by gn, and a constant α is a relative coupling strength.

To derive the reduced density matrix ρ̂Sptq, we assume that the system is weakly coupled
to the thermal bath, allowing us to trace out the bath variables and obtain the Born–Markov
master equation [2, 19]. The generic Born-Markov master equation [2, 19], when applied to our
system, becomes

d

dt
ρ̂Sptq “ ´

i

ℏ
“

ĤS , ρ̂S

‰

´
1
ℏ2

ż 8

0
dτ trB

”

ĤSBp0q,
“

ĤSBp´τq, ρ̂Sptq b ρ̂B

‰

ı

. (5)



Above, ĤSBp´τq denotes the system-bath interaction Hamiltonian in the interaction picture.
We define the bath’s density matrix at thermal equilibrium as ρ̂B “ Z´1 expp´βĤBq, where
the temperature is T “ pkBβq´1, kB is the Boltzmann constant and the partition function is
Z “ trBrexpp´βĤBqs. In principle, Eqn. (5) does not guarantee that the resulting dynamical
equation will take the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) form [2, 20, 21]. To
derive the master equation in GKSL form, one must apply the rotating-wave approximation
(RWA) [16] (which corresponds to neglecting the rapidly oscillating terms) to the system-bath
interaction Hamiltonian (4), which yields: ĤSB “ ℏx0

ř

n gnpâ:ân ` ââ:
nq ` ℏα

ř

n gn

`

ânσ̂` `

â:
nσ̂´

˘

, where, x0 “
a

ℏ{2mω and σ̂˘ are the Pauli raising and lowering operators of the 2LS,
satisfying rσ̂`, σ̂´s “ σ̂z. In the interaction picture, we assume that the classical driving term
in the system Hamiltonian (2) is very weak, i.e., Ω ! ω0. By doing this, we get

ĤSBp´τq “ x0
ÿ

n

gnâ:âneipωn´ωqτ ` h.c. ` α
ÿ

n

gnânσ̂`eipωn´ω0qτ ` h.c. (6)

Using the above expression (6), and choosing the spectral density of the form
ř

n |gn|2 Ñ
ş

dω̃Jpω̃q, we derive the following completely positive Born-Markov master equation for the
reduced dynamics:

d

dt
ρ̂Sptq “ LQHOρ̂S ` L2LSρ̂S ` Lcrossρ̂S , (7)

where LQHOρ̂S describes the dissipator of the quantum harmonic oscillator, which reads

LQHOρ̂Sptq “ ´
i

ℏ
“

ĤQHO, ρ̂S

‰

´ᾱ1
“

x̂, rx̂, ρ̂Ss
‰

´ᾱ2
“

p̂, rp̂, ρ̂Ss
‰

`iᾱ3

´

“

p̂, tx̂, ρ̂Su
‰

´
“

x̂, tp̂, ρ̂Su

ı¯

.

(8)

Equation (8) represents a Caldeira-Leggett [15] type of master equation with an extra term
rp̂, rp̂, ρ̂Sss, which allows us to write Eqn. (8) in GKSL form [20, 21]. The second term in
Eqn. (7), L2LSρ̂S , has the form of the well-known quantum optical master equation for the
2LS [18, 19] and describe a dissipation of a weakly driven internal degree of freedom. The last
term in Eqn. (7), Lcrossρ̂S , denotes a “cross-term” dissipator that captures dissipative coupling
between external and internal degrees of freedom.

3. Adiabatic elimination and the OQBM master equation
In order to demonstrate that Eqn. (7) can be written as OQBM [8], we need to show that it could
be represented as a diagonal representation in position, and this can be done by starting from a
generic non-diagonal representation, defined as ρ̂Sptq “

ş`8

´8
dxdyρpx, yq b |xyxy|. Subsequently,

we make a coordinate transformation to canonical form via u “ px ` yq{2 and v “ x ´ y. In the
rotated coordinate, we obtain

B

Bt
ρpu, vq “ LQHOρ ` L2LSρ ` Lcrossρ, (9)

where

LQHOρpu, vq “

„

iℏ
m

B2

BvBu
´

imω2

ℏ
uv ´ ᾱ1v2 ` ᾱ2ℏ2 B2

Bu2 ` 2ℏᾱ3

ˆ

1 ` u
B

Bu

˙

´2ℏᾱ3v
B

Bv

ȷ

ρ, (10)

L2LSρpu, vq “ ´i
”´ω0

2 ´ β3

¯

σ̂z ` Ωσ̂x, ρ̂S

ı

`β1Lrσ̂´, σ̂`sρ ` β2Lrσ̂`, σ̂´sρ, (11)

Lcrossρpu, vq “

ˆ

B

Bu
m̂1 `

B

Bv
m̂2 ` um̂3 ` vm̂4

˙

ρ. (12)



Here, LrÂ, Â:sρ̂ :“ Âρ̂Â: ´ p1{2qpÂ:Âρ̂ ` ρ̂Â:Âq, is the standard GKSL dissipator [20, 21] and
m̂1, m̂2, m̂3, and m̂4 are the super-operators acting on the internal degree of freedom. The
above system ρpu, vq involves two variables, u and v, where u denotes the slow variable and v
denotes the fast variable, with the latter being the one we eliminate. Assuming pmωq2 „ kBT
and that ᾱ1 is larger than all the system parameters, we use the adiabatic elimination of fast
variables [12, 13, 14] to derive the position distribution function ρ̄puq: ρ̄puq “

ş`8

´8
dvρpu, vq.

After performing the adiabatic elimination, we obtained that v “ 0, which implies that u “ x,
and derive a completely positive master equation for the diagonal elements, which defines
OQBM [8, 9, 10, 11]:

B

Bt
ρ̄px, tq « ´λ1x

B

Bx
ρ̄ ´ λ2x2ρ̄ ` m̂1

B

Bx
ρ̄ ` xm̂3ρ̄ ` λ3

B2

Bx2 ρ̄ ` λ4
B

Bx
pxρ̄q ` L2LSρ̄. (13)

The diffusive term (´λ1x B
Bx ρ̄ ´ λ2x2ρ̄ ` λ3

B2

Bx2 ρ̄ ` λ4
B

Bxpxρ̄q) describes the propagation of the
Brownian particle. The Lindblad term (L2LSρ̄) describes the dissipative dynamics of the internal
state of the Brownian particle. The remaining term (m̂1

B
Bx ρ̄`xm̂3ρ̄) is a ‘decision-making’ term,

describing the interaction between the external and internal degrees of freedom of the Brownian
particle.

4. Numerical results and discussion
The reduced density matrix ρ̄px, tq of the open quantum Brownian particle can be expressed as

ρ̄px, tq “

ˆ

ρ1,1px, tq ρ1,2px, tq
ρ2,1px, tq ρ2,2px, tq

˙

, (14)

where the diagonal elements ρ1,1px, tq and ρ2,2px, tq represent the probability of the system
being in the first or the second quantum state, respectively, and the off-diagonal elements
ρ1,2px, tq “ pρ2,1px, tqq˚ represent quantum coherences. Using the above expression (14), the
master equation (13) can be rewritten as

B

Bt
ρ` “

"

λ3
B2

Bx2 ` ∆1x
B

Bx
` λ4 ´ λ2x2

*

ρ` ´ 2δ1
B

Bx
CI ` 2ã2

B

Bx
CR,

B

Bt
ρ´ “

"

λ3
B2

Bx2 ` ∆1x
B

Bx
` ∆2 ´ λ2x2

*

ρ´ ´ β̄ρ` `

"

4ã7x ´ 4Ω ` 4δ2
B

Bx

*

CI

´

"

4ã8x ` 4δ3
B

Bx

*

CR,

B

Bt
CR “

"

λ3
B2

Bx2 ` ∆1x
B

Bx
` ∆3 ´ λ2x2

*

CR `

"

ã8x ` δ3
B

Bx

*

ρ´ `
1
2 ã2

B

Bx
ρ`,

B

Bt
CI “

"

λ3
B2

Bx2 ` ∆1x
B

Bx
` ∆4 ´ λ2x2

*

CI `

"

Ω ´ ã7x ´ δ2
B

Bx

*

ρ´ ´
1
2δ1

B

Bx
ρ`, (15)

where ρ˘ “ ρ1,1px, tq ˘ ρ2,2px, tq, CR “ Repρ1,2px, tqq, CI “ Impρ1,2px, tqq. To explore the
behavior of OQBM, we integrate the system of partial differential equations (15) numerically.
We consider Gaussian and non-Gaussian initial distributions for the open Brownian particle and
assume that the internal degree of freedom is initially a pure state described by

ρ̄jpx, 0q “
1

2Ij
e´xj

b

ˆ

2 cos2 θ sin 2θe´iϕ

sin 2θeiϕ 2 sin2 θ

˙

, (16)

where Ij “
ş`8

´8
dxe´xj , θ P r0, πq, ϕ P r0, 2πq, and j ą 0. Figure 1, shows the position probability

distribution P px, tq “ tr
`

ρ`px, tq
˘

of finding the open Brownian particle at position x at time t.
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Figure 1. The position probability distribution P px, tq of the open quantum Brownian particle
for different moments of time. The initial distribution is given by Eqn. (16), with θ “ π{6,
ϕ “ π{4. The left panel and the right panel correspond to j “ 2 and j “ 10, respectively.
Curves (a) to (e) correspond to times 0, 50, 100, 150, and 200, respectively. Other parameters
are set to Ω “ 0.3, β “ ∆1 “ ∆2 “ ã7 “ 10´3, ∆3 “ λ2 “ λ4 “ δ1 “ ã8 “ 10´4, ∆4 “ 8 ˆ 10´3,
λ3 “ 5 ˆ 10´3, δ2 “ 3 ˆ 10´2, δ3 “ 10´2, and ã2 “ ´4 ˆ 10´2. For times t ě 50, the profile
splits into two Gaussians.

The left panel of Fig. 1 demonstrates that for the initial Gaussian distribution (for j “ 2) and
a chosen set of parameters, the OQBM walker probability distributions split into two Gaussian
distributions at time t ě 50. In the right panel of Fig. 1, one can see clearly that even with a
non-Gaussian initial distribution (for j “ 10), the position probability distribution of the open
Brownian particle converges into a mixture of Gaussian distributions at times t ě 50, for various
parameters.

To derive the equations for the cumulants of the position distribution of the OQBM walker, we
take the logarithm of the generating function of the characteristic function of the scaled reduced
density matrix ρ̃pξ, tq as ln ρ̄pk, tq “ ln

@

e´ikξ
D

“ ln
ş`8

´8
dξρ̃pξ, tqe´ikξ “

ř8
n“1

p´ikqn

n! xξnyc.

Assuming a Gaussian initial state of the form (16) for j “ 2, and assuming xx4yc “ 0. For
the zeroth order p´ikq0, we derive

0 “ λ̄2xxy2
c ` λ̄2xx2yc ` ∆1 ´ λ4. (17)

The above expression (17) can be written as xxy2
c `xx2yc “ xx2y “ ℏ

2mωx̃2
0

`

2npωq`1
˘

, which shows
that the second moment xx2y of the position is related to the quantum mechanical zero-point
energy and the thermal occupation npωq.

5. Conclusion
In this contribution, we outlined the microscopic derivation of a completely positive master
equation for OQBM using the adiabatic elimination of fast variables method for a weakly
driven open Brownian particle confined in a harmonic potential and dissipatively coupled to
a thermal bath. We numerically solve the derived master equation for a reduced density
matrix of the OQBM for Gaussian and non-Gaussian initial conditions. Both examples show
how the OQBM dynamics converge to Gaussian distributions even for the non-Gaussian initial
distribution. We found that the third-order cumulant xx3yc does not vanish, indicating deviations
from Gaussianity. The OQBM master equation describes an example of quantum-classical
master equations, which now seem to be finding application in various fields, including gravity
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Figure 2. The evolution of the third-order cumulant xx3yc as functions of time. The initial
distribution is given by Eqn. (16) with θ “ π{8 and ϕ “ π{4. Other parameters are set to
Ω “ ā7 “ 10´2, β “ 5 ˆ 10´3, χ “ 0.25, λ̄2 “ 10´3, ∆1 “ 4 ˆ 10´2, λ̄3 “ 3 ˆ 10´2, ∆3 “ δ̄3 “

ā2 “ 3 ˆ 10´3, ∆4 “ 9 ˆ 10´2, ā8 “ 6 ˆ 10´3, δ̄1 “ 9 ˆ 10´3, and δ̄2 “ 2 ˆ 10´2.

theories [22, 23, 24]. Future studies along this line of research will explore the generalization of
OQBM to gravity-related theories.
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