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Abstract. Laplacian eigenmodes in non-trivial topologies (e.g. having twisted periodicity) are
important in constructing a complete picture of the physics at play within models that incorporate
compact extradimensional spaces. Determining them analytically is generally unwieldy, and the
existing standard numerical methods have limited ability as spatial dimensions increase and when
computing higher-index eigenmodes is required. To determine the feasibility of using physics-
informed neural networks to compute Laplacian eigenmodes, we apply them to three primitive
test cases: the Möbius strip, the real projective plane (RP2) and the 3-torus (T3) in Cartesian
coordinates. The potential performance of the neural networks approach beyond solving the
simpler cases is estimated in terms of the approximation errors obtained by comparing them with
known analytical solutions.

1 Introduction
The reduction of extra dimensions (i.e. compactification) is a crucial route for achieving the phenomenology of
new physics in extra dimensions [1]. Compactification has its roots in seminal works, such as Ref. [2], where
masses were generated in 4D space-time induced by higher-dimensional supergravity [3]. Subsequently, further
realisations of compactification have considered, to a greater extent, extradimensional spaces with flat metrics,
and, to a lesser extent, those with curved metrics, though phenomenologically the latter provide more interesting
properties. For example, curved spaces give rise to a potential for specific 4D scalar fields, which gives them
masses not arising otherwise [1]. Among negatively curved spaces, a special case is the nilmanifold, a manifold
that has found use as a compactification scheme for Type II string theories and M theory, e.g. see Refs. [4, 5].

An n-nilmanifold (here n denotes the number of spatial dimensions) is a smooth manifold Mn obtained by
quotienting a nilpotent Lie group A by a discrete subgroup Γ, i.e. Mn = A/Γ. In general, Lie groups can be
viewed as n-dimensional manifolds [6]. For the 3-nilmanifold, the Lie group of concern is the Weyl group, which
is the only solvable Lie group in 3D [3]. Given that the associated Lie algebra is the Heisenberg algebra, M3 is
otherwise known as the Heisenberg nilmanifold. For the Heisenberg algebra:

[V1, V2] = −fV3, [V1, V3] = [V2, V3] = 0, (1)

where f is a structure constant, the terms Va=1,2,3 are contravariant vectors from which Maurer-Cartan one-forms
ea=1,2,3 (i.e. covariant vectors) can be determined [3]. The Va and ea terms form the basis of the (co)-tangent
space of M3 whose metric in terms of the one-forms is [6]:
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ds2 = (e1 + ae3)2 + (e2 + be3) + c2(e3)2; a, b ∈ R, (2)

where c is not a true parameter and can be set to unity without loss of generality.
M3 is parameterised by dimensionless angular coordinates xm=1,2,3 ∈ [0, 1] related to the Maurer-Cartan

one-forms according to [1, 6]:

e1 = r1dx1; e2 = r2dx2; e3 = r3(dx3 +Nx1dx2); N =
r1r2

r3
f ∈ Z∗, (3)

with rm=1,2,3 being radii (they have units of length same as em=1,2,3). The topology of M3 is represented by
discrete (or “twist”) identifications describing how a unit cube, with xm=1,2,3 as coordinates, is deformed via the
joining of points on opposite faces to construct this space. They are the following:

(x1, x2, x3) ∼ (x1, x2 + 1, x3) ∼ (x1, x2, x3 + 1) ∼ (x1 + 1, x2, x3 −Nx2). (4)

These identifications lead to the interpretation of M3 as a twisted fibration over a circle (in other words, a 2-torus
in the x2 and x3 directions with changing geometry along the base circle parameterised by x3, the fibre coordinate)
[3, 6]. As such, M3 may be thought of as a twisted torus, a concept that can be applied in more general terms to
nilmanifolds with spatial dimensions higher than n = 3.

The Laplacian on M3 has been used as a tractable example to construct the phenomenology of fields for
toy models (e.g. scalars [6], gauge bosons [1] and spinors [7]) in extra dimensions. Mathematically, we have at
hand a Sturm-Liouville problem that can be solved analytically, giving closed-form expressions for the associated
eigenvalue spectrum. Concerning the physical significance of the solutions, the eigenvalues of the Laplacian
correspond to masses, and the eigenfunctions provide a natural expansion basis for fields in extra dimensions. For
more detailed models of negatively curved spaces, numerical analysis becomes necessary; however, many standard
approaches are limited by the non-trivial and convoluted nature of the spaces involved.

This work has focused on testing physics-informed neural networks (PINNs) as a new numerical approach to
the Laplacian on non-trivial topologies, beginning with calculable cases in n = 2 and 3 dimensional spaces with
flat metrics. Ultimately, the aim is to test PINNs on the Laplacian on M3, which is not flat. Therefore, Section 2
will review the Laplacian on various spaces, starting with the relatively simple (i.e. the Möbius strip and real
projective plane both in 2D space, and the 3-torus in 3D) and building up to the not so simple case of M3. Results
of numerical analysis (using PINNs) of the Laplacian on each of these spaces are given in Section 3, where the
performance of the PINN approach is reported in terms of relative mean square errors. Finally, discussions on the
advantages of PINNs and their potential applicability in more challenging, less tractable extradimensional cases
are discussed in the last section (Section 4).

2 Theory
To explore the Laplacian on M3 using numerical analysis, it is natural to first consider related spaces that represent
simple building blocks by which M3 is constructed. These spaces are described, followed by the expressions of
their eigenvalue spectra. Thereafter, the eigenvalues expected from M3 are given. Note that, in general, the
Laplacian of a scalar field is:

∇2Φ =
1√
g
∂m(

√
ggmn∂nΦ), (5)

where gmn is the metric for our flat-space Möbius strip, RP2 and T3, with m,n = 1, 2, 3. Therefore, the Laplacian
is simply:

∇2Φ = (∂2
1 + ∂2

2 + ∂2
3)Φ. (6)

Setting a = b = 0, c = 1; r1 = r2 = r3 = 1 and f = 1, the metric of M3 (i.e. Equation 2) has components [6]:

g11 = 1; g22 = 1; g23 = g32 = 1; g33 = 1 + x2, (7)

where g = 1 and the Laplacian is given as:

∇2Φ = (∂2
1 + (∂2 − x1∂3)

2 + ∂2
3)Φ. (8)

Imposing the relevant topology-based boundary conditions (i.e. discrete identifications), Equations (6) and (8)
can be solved analytically using the method of separation of variables for the former and the Hermite differential



equation for the latter. While Equation (4) dictates the twisted periodic boundary conditions for M3, the relevant
identifications for the simpler spaces are:

Möbius strip: (x1, x2) ∼ (x1 + 1,−x2), xm=1,2 ∈ [−0.5, 0.5]2; (9)

RP2 : (x1, x2) ∼ (x1 + 1,−x2) ∼ (−x1, x2 + 1), xm=1,2 ∈ [−0.5, 0.5]2; (10)

T3 : (x1, x2, x3) ∼ (x1, x2 + 1, x3) ∼ (x1 + 1, x2, x3) ∼ (x1, x2, x3 + 1), xm=1,2,3 ∈ [0, 1]3. (11)

For the Möbius strip, apart from the periodic boundary condition, there is a Dirichlet boundary condition;
namely: Φ(x1, 0.5) = Φ(x1,−0.5) = 0. The corresponding eigenvalue spectra are [6, 8, 9]:

Möbius strip: λ2
n1,n2

⊃
{
π2

(
n2
1 + n2

2

)}
n1∈Z;n2∈N\{0}

n1+n2 odd
, (12)

RP2 : λ2
n1,n2

⊃
{
π2

(
n2
1 + n2

2

)}
n1,n2∈Z, (13)

T3 : λ2
n1,n2,n3

⊃
{
4π2

(
n2
1 + n2

2 + n2
3

)}
n1,n2,n3∈Z . (14)

Note the two-fold and three-fold degeneracies in the 2D and 3D cases, respectively. The corresponding eigen-
functions can be found in Refs. [6, 9]. For M3 there are two families of eigenstates; namely, T2 modes satisfying
the x3 independent form of Equation (8) and fibre modes satisfying the x3 dependent Laplacian. In this case, we
have:

T2 : µ2
p,q ⊃

{
4π2

(
p2 + q2

)}
p,q∈Z , (15)

M3 : M2
n,k,ℓ ⊃

{
(2πk)2

(
1 +

2n+ 1

2π|k|

)}
k∈Z\{0},n∈N

, (16)

where the ℓ index, not appearing in Equation (16), but appearing in the associated eigenfunctions implies de-
generacy of level |k|, since 0 ≤ ℓ ≤ |k| − 1. Importantly, note that the associated eigenfunctions on M3 are
non-separable in the coordinates xm=1,2,3, unlike the associated eigenfunctions on the other simpler spaces. Both
Equations (15) and (16) form complete sets of eigenvalues whose corresponding eigenmodes can naturally serve
as expansion bases for fields in higher-dimensional spaces. Note also that the eigenvalues scale with the sizes of
the spaces and the specific forms given are relevent for the specified radii and lengths for the sides of the deformed
unit squares and unit cubes.

3 Numerical analysis
Knowing the exact solutions of the Laplacian on some example 2D and 3D spaces, numerical methods like PINNs
can be tested, allowing us to infer their potential performance in problems that are non-trivial, not easily calculable
(due to the negative spatial curvature). Some of the calculable cases also provide physically interesting properties,
which make them, in their own right, worth studying.

3.1 Principle of the analysis
Using PINNs, we begin with an ansatz consisting of many tunable parameters to be updated based on the evaluation
of the Laplacian and the relevant boundary conditions at selected points (i.e. the unlabelled training points). Since
no approximation is required to numerically evaluate the derivatives like mesh-based methods (e.g. using the
Cornish & Turok approach [10]), the contribution of truncation errors to numerical errors is alleviated. Given in
Table 1 is the algorithm followed by the PINN approach, where note that the terms wℓ

jk and bℓj denote the tunable
weights of the neural network (NN) ansatz f(xi) serving as the approximate solution to the differential equation.
To facilitate the solving of a differential equation, the same is embedded in the loss function L that includes the
physical constraints and extra terms that penalise f(xi) = 0 and enforce the scanning of Ê in the positive direction.
With the latter loss term, training over a set number of epochs encourages the learning of several Ê (note: an epoch
consists of a single run through the entire training data). The total loss is given generically as:

L = LPDE + LBC + Lextra. (17)

The loss terms LPDE ,LBC are mean square errors of the PDE (residual) and the boundary conditions; Lextra

dynamically constrains f(xi, θ) and Ê. Specifically, Lextra is given as [11]:

Lextra =
1

∥f̂∥2
+

1

∥Ê∥2
+ ∥e−Êinit+Êstep ]∥2, (18)

where the first two terms penalise the f(xi) = 0 and E = 0 as solutions to the PDE. The third term enforces
the learning of eigenvalues in ascending order as the NN runs through its training loop.



• Initialise Ê = 1 and NN ansatz parameters θ =
{
wℓ

jk, b
ℓ
j

}
1≤ℓ≤L

randomly from e.g.

U(−σ, σ).

• For each epoch in training epochs:

1. Input xi (training points) + Evaluate f(xi, θ) and L(θ).

2. Backpropagate: compute
∂L
∂θ

=

{
∂L
∂wℓ

jk

,
∂L
∂bℓj

}
1≤ℓ≤L

with automatic differ-

entiation.

3. Update θ: according to your chosen gradient-based (hence the previous step)
optimisation algorithm (e.g. ADAM is a standard optimiser) [12].

4. Increment Ê after specified epochs (enforces search for eigenvalue near the
new Ê).

Table 1: The algorithm for optimising ansatz f(xi, θ) by minimising L(θ).

Möbius strip RP2 T3 M3

En µ2
p,q

E1/2: 4.95 E2/2: 9.82 E1/2: 9.87 µ2
0,1/2: 19.74

(0.2928%) (0.0225%) (0.0426%) (0.0265%)
E2/2: 24.67 E3/2: 19.74 E2/2: 19.74 µ2

1,1/2: 39.54
(-0.004%) (0.0094%) (-0.0101%) (0.1450%)
E4/2: 64.15 E4/2: 24.81 E3/2: 29.62 µ2

0,2/2: 78.87
(-0.0087%) (0.5597%) (0.0320%) (-0.1145%)
E5/2: 83.87 E5/2: 39.48 E4/2: 39.46 µ2

2,1/2: 99.33
(-0.0233%) (0.0018%) (-0.0351%) (0.6387%)
E7/2: 143.11 E8/2: 64.15 E5/2: 49.34 µ2

2,2/2: 158.04
(-0.0028%) (0.0008%) (-0.0189%) (0.0769%)

Table 2: First five PINN approximated eigenvalues and their percentage errors.

3.2 Details of the implementation
We used the PyTorch library in Python to implement PINNs in a mostly standard way, i.e. using a fully-connected
neural network as the architecture, incorporating the PDE of interest in the loss function, and using the ADAM
optimiser as our NN update algorithm. For the relatively simple 2D and 3D spaces, solved analytically by trigono-
metric functions, it was sufficient to use a single hidden-layer NN with input and output nodes dictated by the
variables of the PDE. In general, training was carried out for at most ∼ 106 epochs, with a learning rate of ∼ 10−1

and the number of training points set to 4n for n = 2 or 3 dimensions of space. These are intentionally rough
specifications because they are parameters that are not directly determined by the physics at hand. They are instead
related to the optimisation algorithm and its optimal configuration in relation to the setup of other parts of the
PINN, such as the architecture.

3.3 Results
Table 2 and Figure 1 give the low-lying eigenvalues of the Laplacian on the 2D and 3D spaces of interest. Figure 1
is an example plot of the typical losses and approximations of the eigenvalues generated as training progresses.
The tunable parameter representing the eigenvalue (initially set to one) converges on discrete points in eigenvalue
space where the PINN loss is minimised. The losses are subsequently pushed out of the minima to scan for higher
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Figure 1: The PINN loss and approximations of µ2
p,q given exactly by Equation 15.

eigenstates. The duration, in epochs, of convergence to a particular eigenvalue (seen as plateaus in the plot of the
PINN approximate eigenvalues) is indirectly controlled by the Êstep in the last loss term of Equation (18).

As can be inferred from Table 2, the Laplacian on twisted periodic manifolds is well approximated by our
mainly standard PINN algorithm with the topology enforced as boundary conditions in the loss function as in
Equation (17). For many of the identified eigenmodes, the accuracy of the approximations relative to the exact
values is high (i.e. <1% relative mean square error). However, some eigenvalues (e.g. the µ2

1,2 approximation
seen in Figure 1) have larger errors compared to others due to the algorithm spending less time minimising the
loss (i.e. learning the eigenvalue) at those values. Partial control of the convergence duration can be achieved by
tweaking the Êstep (reducing it increases the duration, at the cost of reduced speed of adjustment of the eigenvalue
parameter).

Given so far are the T2 modes of the Laplacian in M3. As can be seen in Figure 1, the µ2
p,q eigenvalues are

learned while the M2
k,n,ℓ eigenvalues are not identified. There is, therefore, a limitation to the standard implementa-

tion of PINNs in the multivariable contexts where separation of variables occurs by default, making non-separable
functions (such as the fibre modes) difficult to learn. What our results show is that twisted periodic topology is not,
per se, a challenge for PINNs (nor is dimensionality). This point is borne out by our PINN’s favorable performance
considering the twisted periodic topology of the Möbius strip and RP2, and the high-dimensional case of T3. As
such, there is a good chance to numerically determine M2

k,n,ℓ for M3 given an effective modification to the PINN
algorithm, currently under investigation.

4 Discussions and Conclusions
This work sought to test a recently developed numerical method based on artificial neural networks [13] in the
context of particle physics phenomenology on compactified extradimensional spaces. The task at hand was to
solve the Laplacian on the 3-nilmanifold, a space whose topology can be thought of as consisting of several com-
pounding aspects; namely, three spatial dimensions, non-trivial topology, and negatively curved geometry. Since
the Möbius strip, RP2, and T3 capture these aspects separately, they were naturally the first test cases considered.
The accuracy remained comparable across different numbers of dimensions and boundary conditions considered,
implying PINNs adapt well in various scenarios. We can attribute this to the use of automatic differentiation in
lieu of numerical differentiation, an approach that facilitates exact evaluation of gradients and, as such, avoids the
truncation errors of other numerical methods.



Our standard PINN approach runs into challenges when applied to M3 because the optimisation algorithm
favours removing x3 dependence, such that the problem being solved is the Laplacian on T2 with eigenvalues
µ2
p,q . This is a simpler problem to solve, not only because of the reduced dimensionality and relatively more trivial

periodic boundary conditions, but also because the solution functions are separable (the fibre modes are not).
Alleviating this challenge requires enforcing the learning of non-separable functions in problems simultaneously
satisfied by two or more families of linearly independent solutions (like we see with the Laplacian on M3).

Future work will continue to look at twisted periodic topologies, but with more focus on curved geometry,
such as the curved Möbius strip that has been studied extensively within the literature using traditional numerical
techniques [8, 9]. A more rigorous comparison between PINNs and other established techniques would be worth
conducting to determine, more clearly, the advantages of the former. In terms of physically significant problems,
the PINN approach could be applied in less calculable cases such as those involving gauge fields and fermions (no
localised fields); the direction followed by Ref. [6].
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