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Abstract. Artificial Intelligence (AI) classification as a methodology and approach to identify
Tuberculosis (TB) in patients has become a topic of increasing interest in the past few decades.
This is in large part due to the increasing demand for faster methods of detecting TB to reduce
spread. However, such methodologies require large datasets so that algorithms can learn the man-
ifestations of TB in the lung. Some of these datasets are private due to patient confidentiality, and
the publicly available ones are limited in number. The AI industry has exhausted publicly avail-
able chest X-ray (CXR) scans and now look for alternate methods to further develop research
in the field. The study focuses on developing methods to translate 3D information on effective
electron density from Hierarchical Phase Contrast tomography (HiP-CT) of a human lung to 3D
segmented images based on differentiated effective atomic number and mass density. The pur-
pose of this methodology is to create a digital phantom as a synthetic model of a human lung
where pathologies of the various stages of TB can be inserted. Monte Carlo modeling of X-ray
radiography can then be performed on sets of such digital phantoms to produce a library of 2D
conventional X-ray radiographs labeled with details of the occurrence of TB pathologies. This
synthetic data set can be used to train an AI classifier. The study will leverage HiP-CT scans
produced by the European Synchrotron Research Facility (ESRF) beamline BM18. These are
high-resolution 3D scans of complete human organs. To create a synthetic dataset, the Geant4
toolkit will be used to simulate labeled 2D X-ray radiographs starting from the properties and
physiological conditions of a lung. This information is gathered from the HiP-CT images; to
understand the material properties of the HiP-CT images, the phase shift (δ) and the effective
mass densities (ρeff ) of the organic materials within the lung must be known. Thus, this re-
search builds on the derivation of equations and the calculation of these parameters as inputs for
simulation and describes our workflow towards the synthetic images.



1 Introduction
Tuberculosis (TB) is a significant global health crisis facing many countries and one of the leading causes of death
from a single infectious disease [1]. Through early detection, the disease can be cured and the spread contained. A
chest radiograph allows experienced physicians to identify the early presence of TB. However, the process requires
a keen eye and an experienced professional in the field of radiography, where some cases may lead to inconsistent
diagnostics due to poor imaging contrast.

To reduce/mitigate false diagnosis, AI tools are leveraged to assist in TB detection. These solutions are based
on machine learning (ML) algorithms that assist in identifying the different ways TB manifests from Chest X-Rays
(CXR) of diagnosed patients. For an ML algorithm to detect TB from a CXR, a repository of CXR data (preferably
labeled) is required for the algorithm to learn how TB presents in the lung. The size of the dataset required in order
to ensure that the algorithm is trained properly is often found to be quite large, which can hinder progress in the
field.

The comparative study covered in [2] investigates different ML techniques used for TB detection. The study, in
addition, outlines the different datasets used to train and test the accuracy of the algorithms. An important aspect of
the study covered in [2] which forms the foundation for the research covered in this study, is the overuse of publicly
available CXR datasets. Due to privacy constraints, the only available CXR datasets are those made available to
the public; researchers have exhausted the use of these datasets to the point of testing algorithms on the same data
on which they were trained. This process is repeated for each "improved" technique used for detection, inevitably
increasing the accuracy in detection.

The purpose of the conducted study is to create a computationally simulated 3D healthly lung model that can be
modified in a stochastic way to demonstrate the different manifestations of TB at different locations, following the
natural physiological conditions of a diseased human lung. The aim is to create a labeled dataset of CXR images
of healthy and TB infected lungs that can be used to train ML algorithms for TB detection. This process introduces
new CXR data to the public and allows the manipulation of the model to suit different pathologies according to the
different stages TB manifests in the lung. This introduces a dataset that has never been explored nor published in
existing literature.

The study will leverage 3D scanned digital human lung datasets from the ESRF, scanned from beamline 18
(BM18) using Hierarchical Phase-Contrast Tomography (HiP-CT). With these datasets, the aim is to translate the
3D information of the effective electron density ρeff from the HiP-CT of the organ into 3D segmented images
based on the differentiated effective atomic number Zeff and mass density ρmass.

The translation of information from the HiP-CT dataset to a material composition format will be done as an
additional data preparation step before including it into the Geant4 toolkit. Geant4 will then be used to model the
X-ray particle transport through the lung to the detector forming the usual 2D X-ray absorption contrast radio-
graphs. This software leverages Monte Carlo modeling of random particle interactions with matter to create a 2D
conventional X-ray radiograph image with labeled TB pathologies.

2 Basic Physical Principles and Theorems
2.1 Particle Interaction in X-ray Diagnostics
In x-ray diagnostics, the linear attenuation of a material at a specified energy E is separable into two parts; the
contributions from the photoelectric cross-section σPE and the scattering cross-section σSC [3]. The relationship
of the attenuation coefficient and the two components at the beam energy E, can be expressed as,

µ = ρmass
NA

Amass
(σPE(E) + σSC(E)) (1)

where ρmass is the mass density of the material, NA is Avogadro’s constant (NA = 6.022 × 1023mol−1) and
Amass represents the atomic mass of a material.

According to [3], the cross-sections σPE and σSC can be given by the following formulas, where σSC can be
described as a combination of Compton scattering and coherent scattering cross-sections,

σPE(E) ∼ K
Zm

E3
(2)

where K is a constant and Zm is the effective atomic number of a material raised to a constant [3].

σSC(E) = Z[ϕKN(E) + ϕcoh(Z,E)] (3)

where ϕKN(E) represents the Klein-Nishina cross-section and ϕcoh(Z,E) represents the coherent scattering
cross-section. However, the contribution of the coherent scattering cross-section of the X-ray is negligible and
thus, using the expression of the electron density expressed as a function of the linear attenuation µ [3],



µ = ρe

[
ϕPE(E)

Z
+ ϕKN(E)

]
(4)

equation (4) can be rewritten as,

µ = ρe[K
Zm−1

E3
+ ϕKN(E)] (5)

Recall that the Compton scattering cross-section was derived from the Klein-Nishina formula equation (4).
Here, Compton scattering is divided into two parts; the Compton scattered (σscatt) and Compton absorption
(σabsp).

σc = 2πr2e{
1 + γ

γ2
[
2(1 + γ)

1 + 2γ
− 1

γ
ln(1 + 2γ)] +

1

2γ
ln(1 + 2γ)− 1 + 3γ

(1 + 2γ)2
} (6)

At X-ray energies, the low energy limit, the Compton absorption becomes small, and the Compton cross-section
becomes,

σc = 2πr2e[1] (7)

Therefore,

ϕKN(E) ≡ σc = 2πr2e[1] (8)

The dependence of the photo-electric cross section on the atomic number of the material is Z5. However the
dependence of the Compton scattering cross section is Z1, as the equation (8) is on a per electron basis. If both
processes occur together in a compound or mixture, then it will lead to an effective Z as discussed in the next
section.

2.2 Mass Density Derivation
X-ray computed tomography (CT) is an imaging technique based on principles discussed above. The normal
implementation uses absorption contrast radiography to produce the 2D X-ray images that are tomographically
combined into a 3D image [3]. It is also possible to base the tomography on X ray phase contrast imaging, as in the
HiP-CT technique described above. The refractive index of a material can be defined by the equation n = 1−δ+iβ
where δ represents the real part of the refractive index and β its imaginary part. The real part, δ is responsible for
the phase contrast and the imaginary part, β is responsible for the absorption contrast. The attenuation of the
transmitted X-ray is proportional to µ = 4πλ−1β [3]. The real part δ is related to the imaginary part via the
Kramers-Kronig relations. At X-ray energies, the real part is typically three to four orders of magnitude larger than
the imaginary part. Therefore for X ray Tomography, phase contrast imaging will typically display much higher
sensitivity to small variations in material composition and density, and have a much higher dynamical range. Phase
contrast imaging has become the preferred technique at synchrotron light sources.

The phase shift δ demonstrates a proportional relationship with the electron density ρe of a material and an
inverse relationship with the incident beam energy E [3],

δ =
ρereh̄

2c2

2πE2
(9)

where re represents the classical radius of an electron r0=2.82 x 10−15 m, h̄ is the reduced Planck’s constant
and c is the speed of light. In reference [3], an equation representing the effective atomic number Zeff for a mix-
ture of several elements each with a different Z is derived,

Zeff = k

√∑
i

fi(Zi)k (10)

where fi represents the total number of electrons associated with each element in a compound and Zi is the
atomic number of the elements. In reference [4], k is defined by the parametrization of the Z-dependence at high
photon energies, and is defined by k = B(E)lnZ + C(E) [4]. However, in reference [5], k is defined as 2.94 for
biological specimens. One notes that this is intermediate between the Z5 and Z1 atomic number dependence of
the photo-electric effect and the Compton effect respectively.

According to [3], the effective electron density can be defined as follows,



ρeff =
ρmassNAZeff

Amass
(11)

Furthermore, the effective electron density ρeff can be calculated as a function of the effective atomic number
(Zeff ),

ρeff =
ρmassNA

k
√∑

i fi(Zi)
k

Amass
(12)

To calculate the phase shift for a material, substitute equation (12) in (9), the following is derived;

δ =
[ρmassNA

k
√∑

i fi(Zi)
k]reh̄

2c2

2πE2Amass
(13)

Equation (13), describes the proportionality between the phase shift (δ) and the effective electron density (ρeff )
of a material expressed as a product of the effective atomic number (Zeff ) and the mass density (ρmass).

The term "effective" associated with the atomic number and electron density is derived from the average of the
Z-dependence with different exponents and two or more elements in a compound. Thus, in this case an assumption
is made where the value of k is a substitute for biological materials. A key point from equation 13 is that a 3D
HiP-CT digital image is quantitative in the effective electron density δ.

3 Discussion
The figure below is a healthy lung sample scanned at the ESRF using HiP-CT at a resolution of 100 µm. Identify-
ing the different organic materials present in the data set is a challenge.

Figure 1: Healthy lung lobe scanned at the ESRF using HiP-CT. The grey scale is proportional to the effective
electron density δ using the equation from equation 13 and the know compositions of these materials.

Figure 2: Image Threshold for Segmentation. The x-axis is currently a 2 byte integer. It is proportional to the
effective electron density δ.



Figure 2, represents the image histogram, this identifies a number proportional to the effective electron density
per voxel. The range provides information on the number of different organic materials present in figure 1 by the
density of the compound. Certain materials, such as the voids which are inflated with formalin and the blocks
of agar, can be used to calibrate the effective electron density, as the elemental composition of these materials is
known.

The image segmentation performed on the dataset aids in understanding the organic material present and assists
with differentiating between the organ material and the supporting structures. Understanding the effective electron
densities of all materials in the dataset allows the segmentation of the lung structure into specific materials. These
can then be mapped into the lung structure in terms of a material composition and a density, such that the correct
effective density is achieved. This is then the final 3D model including a description of geometry and materials
that is used in building a simulation of the lung model in Geant4.

Figure 3: (left) Segmentation Based on Threshold. (right) and Geant4 Simulation Construction

The image on the right of figure 3 is an illustration of the simulation setup in the Geant4 environment. By
understanding the effective properties of materials, the interaction between photons and the materials, this will
produce the scattered and transmitted X-rays, where the transmitted X-rays would be reconstructed into a simulated
CXR with TB manifestations according to the digital phantom.

Using equations (12) and (13) will assist in calculating the effective properties of the organic compounds from
the HiP-CT dataset and their phase shifts. For a given Amass, k and ρmass, the following table represents the
calculated Zeff , ρeff and δ for different materials that can be found within the dataset.

Material Amass (g/mol) k ρmass (g/cm3) Zeff ρeff (e/cm3) δ
water 18 2.94 1 5.50 1.84x1023 3.57x10−9

formalin 20 2.94 1.09 6.99 2.29x1023 4.45x10−9

ethanol 24 2.94 0.789 6.62 1.31x1023 2.54x10−9

protein 22 2.94 1.35 6.63 2.45x1023 4.75x10−9

fat 26 2.94 0.92 6.59 1.40x1023 2.72x10−9

carbohydrate 24 2.94 1.5 7.25 2.73x1023 5.30x10−9

bone 20 2.94 1.85 13.39 7.40x1023 1.44x10−8

agar 13.35 2.94 1.032 7.16 3.33x1023 6.47x10−9

Table 1: Table representing Atomic Mass Number (Amass), Parametrization Dependence (k), Mass Density
(ρmass), Effective Atomic Number (Zeff ), Effective Electron Density (ρeff ) and Phase Shift (δ) of several mate-
rials.

The range of Amass and ρmass for protein, fat, carbohydrates and bone is specific to a general composition of
compounds found in lung tissue and the chest cavity. For water, formalin, ethanol and agar, this is specific to the
procedure for scanning in a HiP-CT application.



Table 1 represents a quantitative value for different materials that can be present in a HiP-CT dataset. Water
was selected due to the possibility of trace compounds present in the lung or on the surface; formalin and ethanol
were selected as the organ is submerged into a preserving fluid that is a combination of the two materials. Proteins,
fat, and carbohydrates were selected as these compounds are the main constituents of organ tissue in varying
percentages according to tissue type and function. Bone was selected however, no bone material is present in the
dataset but understanding the effective electron density is important since a 2D CXR would include the entirety
of the chest cavity, including bone material. Agar was selected as it is the material used to maintain the upright
structure of the organ during scanning and is quite distinguishable in the left image of figure 3.

4 Conclusion
The research proposes a novel technique for creating a labeled synthetic data set of CXR absorption radiographs
that can be used in many different applications. The technique leverages high-resolution HiP-CT 3D imaging to
create 2D radiographs. This requires an understanding of how to extract material quantities based on effecive
electron density as appropriate for a phase contrast a high-resolution HiP-CT dataset and then how to use this
information to create a low-resolution 2D absorption contrast radiographic image.

The HiP-CT dataset contains the effective electron density information, and by performing a threshold-based
segmentation one can separate the different materials present in the dataset to identify the structure of the organ
and separate the tissue compounds. The segmentation technique identifies the material present in the image on a
per voxel basis. Given an Amass and ρmass for a biological constant k, using equation (12) and equation (13), the
ρeff and δ for a specific compound can be calculated. This aligns a quantitative value to a material compound.

The quantitative information is captured in Geant4. The pathologies can be inserted in healthy tissue in a
stochastic way so that a synthetic model made of known materials and associated densities can be simulated. In this
manner, TB pathologies can be introduced into the model to create a labeled digital phantom and 2D radiographs
can be captured.

This method introduces a new approach for generating a synthetic dataset of labeled pathologies and introduces
the prospect of creating images that can demonstrate more than one pathology. In this manner, we aim to build an
AI classification tool that has been trained on a multitude of ways the disease can present itself.
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