

First Principles Study of NaMnNbPO_4 as a Cathode Material for Sodium-Ion Battery

Mudimeli M V¹,Ranwaha T S¹,Randela R R¹,Patel S¹,DIMA RS³,Maluta N E^{2,3} and Maphanga R R³

¹Department of Physics, University of Venda, P/ Bag X 5050, Thohoyandou, 0950

²Green Technology Confucius Institute, University of Venda, P/ Bag X 5050, Thohoyandou, 0950

³National Institute for Theoretical and Computational Sciences (NITheCs), Gauteng, South Africa

E-mail: tshifhiwa.ranwaha@univen.ac.za

Abstract. Sodium ion batteries (SIBs) are emerging as a sustainable and cost-effective alternative to lithium-ion batteries due to the natural abundance and low cost of sodium. This study employs first-principles density functional theory (DFT) to explore the structural, electronic, mechanical, and thermal properties of NaMnPO_4 and its niobium-doped variant, NaMnNbPO_4 , as cathode materials for SIBs. The results show that Nb doping causes a slight increase in lattice parameters and volume, indicating minimal structural distortion. Electronic density of states (DOS) analysis revealed that NaMnPO_4 is a semiconductor, while Nb doping induces a transition toward half-metallic behaviour. The doped compound also exhibits enhanced mechanical rigidity and improved thermal stability, evidenced by higher elastic moduli, sound velocities, and Debye temperature. These improvements suggest that Nb-doped NaMnPO_4 is a promising high-performance cathode material for next-generation sodium-ion batteries.

1. Introduction

The increasing demand for sustainable energy solutions, such as solar, wind and tidal power has led to the advancement of electrochemical energy storage (EES) systems. EES is a clean and environmentally friendly technology that converts electric energy and chemical energy into energy storage and releases it through chemical reactions [1]. Among the various EES technologies, rechargeable batteries play a vital role in producing clean energy storage because they are cost-effective, require low maintenance, and have a long cycle life. Lithium-ion batteries (LiBs) are widely used as an energy storage system in portable devices (e.g., laptops, tablets and phones) particularly due to their high energy density and extended lifespan. However, the limited amount of lithium on Earth has led to high manufacturing costs, causing a hindrance to its application in large-scale energy storage systems. Thus, there is an urgent need for an alternative to lithium-based batteries. Sodium and lithium both share similar physical and chemical characteristics as they are members of the same group in the periodic table, the alkali-metals [2]. Sodium is the sixth richest element in the Earth's crust and is widely available in the

form of sodium chloride (common salt) [3], which further reduces production costs. Hence, sodium-ion batteries have gained significant attention as a promising alternative for LiBs.

Despite sharing similar intrinsic properties to those of LiBs, the larger ionic radius and high atomic weight of sodium leads to sluggish ionic movement between the electrodes and increases the stress on the host material during cycling, which can result in lower energy density and shorter cycle lifetime [4-6]. Consequently, there is a need to identify and enhance electrode materials with better electrochemical performance including high energy density, and longer lifespan. In recent years, several studies have been conducted on improving cathode materials, as it directly affects cycle performance and further reduces the overall energy density that can be achieved. Among various cathode materials (transition metal oxides, polyanionic compounds, Prussian blue and other organic compounds) [2], transition metal phosphates, NaMP_4 ($M = \text{Ni, Co, and Mn}$) is considered a suitable cathode material for sodium-ion batteries due to high thermal stability and high cut-off voltages [7-9]. A study done by Dima et al. [10] investigated the stability and the voltage window of NaMnPO_4 using first principle calculations that were focused on density functional theory (DFT). The lattice parameter and cell volume changes were found to be less than 7 %, indicating that the structure remained intact during the discharging process[REF]. The voltage value was found between 5.132 V and 4.655 V, which implied that the voltage window is suitable to be applied as SiBs cathodes, and NaMnPO_4 could be treated as a potential SiB cathode material. In this study, DFT was used to investigate the electrochemical performance of NaMnPO_4 , focusing on its structural, electronic, and thermal properties. To enhance its electrochemical performance and electronic conductivity, Nb substitution was introduced to form NaNbMnPO_4 , with the aim of developing a high-voltage cathode material suitable for next-generation sodium-ion batteries (SIBs).

2. Computational method

Density functional theory (DFT) calculations were performed using the Vienna Ab Initio Simulation Package (VASP) code. A spin-polarised generalised gradient approximation (GGA) was used to solve the Kohn-Sham equations with the Perdew-Burke-Ernzerhof functional (PBE) exchange-correlation functional with plane-wave pseudopotential. Geometry optimisation for the ground state energy of NaMnPO_4 was performed. The plane wave cutoff energy of 560 eV and the Monkhorst-Pack scheme were used with a $5 \times 5 \times 7$ k-point mesh. The random substitution doping technique was used to introduce Nb atoms into NaMnPO_4 followed by calculating the structural, mechanical, electronic and thermodynamic properties of the bulk structure of NaMnPO_4 and NaMnNbPO_4 .

3. Results and discussion

3.1. Structural properties

The structural properties of NaMnPO_4 and NaMnNbPO_4 have been calculated and are presented in Table 1. The structural properties for NaMnPO_4 have been calculated and are compared with previous DFT and experimental literature values. The computed values for NaMnPO_4 align closely with those obtained from experimental results and other prior DFT studies [10]. The substitution of Mn with Nb results in a slight increase in the lattice parameter and unit cell volume, suggesting that Nb doping leads to minimal structural distortion. The lattice parameter a exhibited a decrease, whereas b and c showed a slight increase.

Table 1: Structural Properties of NaMnPO_4 and NaMnNbPO_4

	Literature		NaMnPO_4	Deviation		NaMnNbPO_4
	Experimental [10]	DFT [10]		Experimental	DFT	
$a(\text{\AA})$	10.528	10.421	9.093	9.093	1,435	4.923
$b(\text{\AA})$	6.321	6.132	6.864	6.864	0.188	6.449
$c(\text{\AA})$	4.985	4.864	5.091	5.091	0.106	10.195
Volume (\AA^3)	331.740	310.579	322.101	322.101	9.639	323.149
Band gap (eV)		3.161	3.161	3.370		0.185

The unit cell volume of NaMnPO_4 increased from 310.579 \AA^3 to 322.101 \AA^3 in the doped structure, suggesting successful incorporation of the Nb atom without compromising the structural stability of the host material [4]. These changes are attributed to the larger atomic radius of Nb compared to Mn, which results in a small lattice expansion. Despite this expansion, the overall orthorhombic crystal structure remains intact, demonstrating that NaMnPO_4 can accommodate Nb substitution without significant degradation [4].

3.2. Electronic properties

The electronic properties of NaMnPO_4 and NaMnNbPO_4 were examined through an analysis of their spin-polarised density of states (DOS). This enhanced the comprehension of the material's electron behaviour and its capacity to conduct electricity.

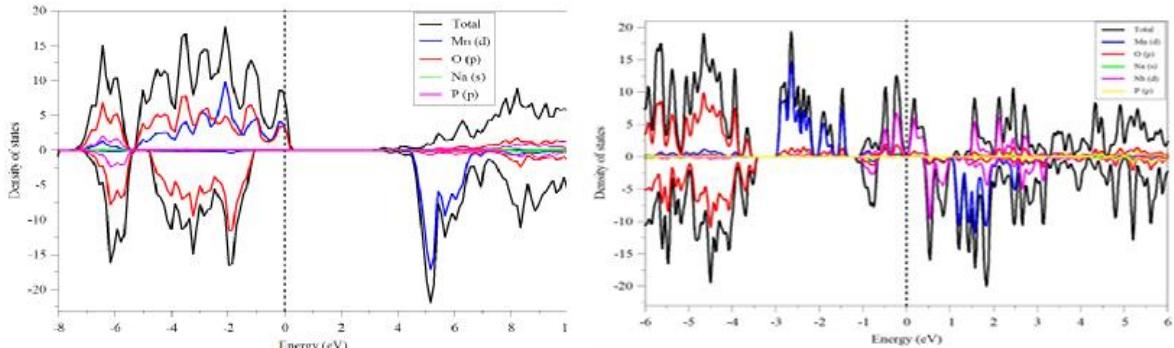


Figure 1. Spin Polarised DOS of NaMnPO_4 and NaNbMnPO_4

The density of states for NaMnPO_4 indicates a distinct energy gap separating the valence band from the conduction band. This indicates that it functions similarly to a semiconductor, requiring a certain amount of energy to facilitate electron movement and enable current flow. This property is advantageous for battery materials, as it regulates electron movement during charging and discharging [4]. After doping with niobium (Nb), the DOS of NaMnNbPO_4 changed. The energy gap became smaller in one of the spin channels, and part of the gap disappears. This indicates that the material is now partly metallic in one spin direction, while still semiconducting in the other. This behaviour is known as half-metallic and hence can be advantageous in batteries as they enhances electrical conductivity while maintaining regulation of electron flow. The enhanced conductivity in NaMnNbPO_4 may augment the efficiency of sodium-ion batteries by facilitating electron mobility within the material during operation.

3.3. Mechanical properties

The mechanical properties of NaMnPO_4 and NaMnNbPO_4 were studied using their elastic constants. These values allow us to determine how strong and stable the materials are under pressure or stress.

$$(C_{11} + C_{12}), (C_{11} + C_{33} + 2C_{13}) > 0$$

$$(2C_{11} + C_{33} + 2C_{12} + 4C_{13}) > 0$$

$$C_{11} > 0, C_{33} > 0, C_{44} > 0 \text{ and } C_{44} > 0$$

Table 2: Elastic constants (Cij) for NaMnPO₄ and NaMnNbPO₄

	NaMnPO ₄	NaMnNbPO ₄
C ₁₁	124.46	172.12
C ₁₂	61.43	52.22
C ₁₃	58.55	79.79
C ₂₂	125.29	200.71
C ₂₃	51.49	60.73
C ₃₃	148.46	148.49
C ₄₄	42.28	59.36
C ₅₅	49.01	58.47
C ₆₆	46.71	58.41

The findings demonstrate that all elastic constants are positive and meet the mechanical stability criteria for orthorhombic crystals. This suggests that both materials demonstrate mechanical stability, an essential aspect for materials employed in battery applications. Comparing the two materials reveals that NaMnNbPO₄ demonstrates higher values for most elastic constants. This suggests that incorporating Nb improves the material's strength and stiffness.

Table 3: Bulk, shear and Young's moduli, Poisson's and Pugh's ratio

	B _H	G _H	E _H	B/G	V
NaMnPO ₄	81.48	42.36	108.30	1.924	0.275
NaMnNbPO ₄	99.42	55.36	141.15	1.780	0.263

After doping NaMnPO₄ with Nb, a notable enhancement in mechanical strength was recorded. The bulk modulus (B), which reflects the resistance to volume change under pressure, increased from 81.48 in the undoped compound to 99.42 in the doped structure. Similarly, the shear modulus (G), which pertains to the resistance against shape deformation, increased from 42.36 to 55.86. The Young's modulus (E), a measure of overall stiffness, increased from 108.30 to 141.15. The observed increases indicate that Nb doping enhances the material's strength and improves its resistance to mechanical deformation.

The analysis focused on Pugh's ratio (B/G) and Poisson's ratio (v) to assess the ductility of the materials. A Pugh's ratio exceeding 1.75 typically signifies ductile behaviour. The values for NaMnPO₄ and NaMnNbPO₄ were found to be 1.924 and 1.780, respectively, indicating that both materials exhibit ductility. The values of Poisson's ratio were determined to be 0.278 for NaMnPO₄ and 0.263 for NaMnNbPO₄. The value exceeds 0.25, indicating that the material exhibits ductility.

The results indicate that Nb doping preserves the structural integrity of NaMnPO₄ while simultaneously improving its mechanical strength and flexibility. Consequently, NaMnNbPO₄ demonstrates enhanced durability and dependability as a cathode material in sodium-ion batteries [2].

3.4. Thermodynamic properties

The Debye temperature (θ_D) was calculated from the average sound velocity (v_m) using the equation [10]:

$$\theta_D = \frac{h}{k_B} \left(\frac{3}{4\pi} \right)^{\frac{1}{3}} v_m \quad (1)$$

where h and k_B are Planck's and Boltzmann's constants, respectively, the average sound velocity in polycrystalline systems, v_m , is evaluated by the expression:

$$v_m = \left[\frac{1}{3} \left(\frac{2}{v_t^3} + \frac{1}{v_l^3} \right) \right]^{-\frac{1}{3}} \quad (2)$$

where v_t and v_l are the mean longitudinal and transverse sound velocities, which can be related by the shear and bulk moduli from Navier's equations:

$$v_t = \left(\frac{3B+4G}{3\rho} \right)^{\frac{1}{2}} \quad (3)$$

$$v_l = \left(\frac{G}{\rho} \right)^{\frac{1}{2}} \quad (4)$$

Table 4: Calculated volumetric density, sound velocities, and Debye temperature

	ρ	V_t	V_l	V_m	θ_D
NaMnPO ₄	3309	3576	6634	3984	512.7
NaMnNbPO ₄	3944	3760	6454	4181	551.1

With the introduction of the Nb dopant, there was an observed increase in both the average sound velocity and the Debye temperature. The Debye temperature increased from 512.7 K for NaMnPO₄ to 551.1 K for NaMnNbPO₄. This increase suggests that Nb-doped NaMnPO₄ exhibits enhanced bonding and improved thermal stability. The observed enhancements indicate that the doped material exhibits superior capabilities in managing heat and mechanical vibrations, thereby rendering it more appropriate for prolonged application in sodium-ion batteries.

4. Conclusion

The density functional theory was employed to explore the impacts of Nb doping on the structural, electronic, mechanical, and thermal characteristics of NaMnPO₄. The findings indicate that the doped material maintains structural stability with negligible distortion. Nb substitution resulted in alterations to the electronic structure, indicating a decrease in the band gap and evidence of half-metallic behaviour, which could enhance electrical conductivity. Furthermore, the doped compound demonstrated improved mechanical strength and thermal stability, as evidenced by elevated elastic moduli and Debye temperature. The integration of these enhancements' positions NaMnNbPO₄ as a highly promising candidate for sodium-ion battery cathodes with superior performance.

5. Acknowledgements

I would like to thank the Department of Physics and the Green Technology Confucius Institute at the University of Venda for their support and access to computational resources. I also acknowledge the National Institute for Theoretical and Computational Sciences (NITheCS). Special thanks to the South African Institute of Physics (SAIP) for providing a platform to present this research.

References

1. Yang, H., Zhang, S., Chen, B., Xiang, S., Xu, Y., Yin, B., & Ackom, E. (2023). The battery storage management and its control strategies for power system with photovoltaic generation. In *Emerging Trends in Energy Storage Systems and Industrial Applications* (pp. 441-484). Academic Press.
2. M. He, S. Liu, J. Wu, and J. Zhu, "Review of cathode materials for sodium-ion batteries," *Progress in Solid State Chemistry*, vol. 74, pp.100452, 2024, doi: <https://doi.org/10.1016/j.progsolidstchem.2024.100452>.
3. P. Phogat, S. Dey, M. Wan, "Comprehensive review of sodium-ion batteries: Principles, materials, performance, challenges, and future perspectives, " *Materials Science and Engineering: B*, vol. 312, pp. 117870, 2025, doi: <https://doi.org/10.1016/j.mseb.2024.117870>.
4. G. Li, X. Lou, C. Peng, C. Liu, and W. Chen, "Interface chemistry for sodium metal anodes/batteries: a review". *Chemical Synthesis*, vol. 2, no. 3, 2022, doi: <https://doi.org/10.20517/cs.2022.19>.

5. A. Rudola, K. Saravanan, S. Devaraj, H. Gong, and P. Balaya, "Na₂Ti₆O₁₃: a potential anode for grid-storage sodium-ion batteries," *Chemical Communications*, vol. 49, no. 67, pp.7451-7453, 2013, doi: <https://doi.org/10.1039/C3CC44381G>.
6. H.W Kim, H. J. Kim, H. Byeon, J. Kim, J.W. Yang, Y. Kim, and J.K. Kim, "Binder-free organic cathode based on nitroxide radical polymer-functionalized carbon nanotubes and gel polymer electrolyte for high-performance sodium organic polymer batteries," *Journal of Materials Chemistry A*, vol. 8, no.35, pp.17980-17986, 2020, doi: <https://doi.org/10.1039/D0TA04526H>.
7. M. Minakshi, D. Mitchell, R. Jones, F. Alenazey, T. Watcharatharapong, S. Chakraborty, R. Ahuja, "Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices," *Nanoscale*, vol. 8, no. 22, pp.11291-11305, 2016, doi: <https://doi.org/10.1039/C6NR01179A>.
8. M. Minakshi, D. Meyrick, "Reversible sodiation in maricite NaMn_{1/3}Co_{1/3}Ni_{1/3}PO₄ for renewable energy storage," *Journal of alloys and compounds*, vol. 555, pp.10-15, 2013, doi: <https://doi.org/10.1016/j.jallcom.2012.11.203>.
9. K.T. Lee, T.N. Ramesh, F. Nan, G. Botton, L.F. Nazar, "Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries." *Chemistry of Materials*, vol. 23, no.16, pp.3593–3600, 2011, doi: <https://doi.org/10.1021/cm200450y>.
10. R.S Dima, P.M. Maleka, E.N. Maluta, R.R. Maphanga, "First principles study on sodium de-intercalation from NaMnPO₄." *Materials Today: Proceedings*, vol. 62, pp. S7-S11, 2022, doi: <https://doi.org/10.1016/j.matpr.2022.02.076>.