7–11 Jul 2025
University of the Witwatersrand, Johannesburg
Africa/Johannesburg timezone

Enhancing Gamma-Ray Spectrometry Through Convolutional Neural Networks and Kolmogorov–Arnold Networks

Not scheduled
20m
Solomon Mahlangu House (University of the Witwatersrand, Johannesburg)

Solomon Mahlangu House

University of the Witwatersrand, Johannesburg

Poster Presentation Track B - Nuclear, Particle and Radiation Physics Poster Session

Speaker

Vuako Maluleke (University of Venda, iThemba LABS)

Description

Gamma-ray spectrometry remains a cornerstone technique in nuclear science and environmental radioactivity assessment, offering precise identification and quantification of radionuclides. Despite its efficacy, conventional analytical methods often rely on manual processing, which can introduce subjectivity, reduce throughput, and hinder real-time analysis. In this study, an automated framework is proposed for gamma-ray spectrometry by employing two advanced deep learning architectures: Convolutional Neural Networks (CNN) and Kolmogorov–Arnold Networks (KAN). The models are trained and evaluated using high-resolution spectral datasets acquired from high-purity germanium (HPGe) detectors. Input features include energy, channel, peak area, and centroid, extracted through digital signal processing techniques. Model performance is assessed based on standard classification metrics such as accuracy, precision, recall, and F1-score, allowing for a comparative evaluation of the CNN and KAN methodologies in terms of classification robustness and generalization capability. This work aims to demonstrate the potential of deep learning for automating gamma-ray spectrum interpretation, thereby enhancing the efficiency, reproducibility, and scalability of nuclear measurement systems. Detailed performance comparisons and implications for real-world deployment will be discussed during the presentation.

Apply for student award at which level: MSc
Consent on use of personal information: Abstract Submission Yes, I ACCEPT

Primary author

Vuako Maluleke (University of Venda, iThemba LABS)

Co-authors

Edward Nkadimeng (NRF-iThemba LABS) Dr Fhulufhelo Nemangwele (University of Venda) Dr Ntombizikhona Beaulah Ndabeni (iThemba LABS)

Presentation materials

There are no materials yet.